
CS 536 — Fall 2018 

Programming Assignment 5 
CSX Code Generator 

 
Due: Thursday, December 13, 2018 

 
 

Your final assignment is to write methods in the class CodeGenerating that walk the AST for 
a CSX program and generate JVM assembler code. Your main program will call the CSX parser. If 
the parse is successful, the type checker is called. If the program contains no type errors, the code 
generator is called. 

The CSX source program to be compiled is named on the compiler’s command line or entered 
through a GUI. Error messages are written to standard output, and the JVM code generated is placed 
in file name.j where name is the identifier that names the CSX class. 

A    complete    code    generator    for    CSX-lite    may    be    found    at    the    following    URL: 
http://www.cs.wisc.edu/~fischer/cs536.f18/course/proj5/startup/eclipse. 

 

The Code Generator 
You will generate assembler code for the Java Virtual Machine (JVM). This is the same target 
machine that Java compilers assume. You will assemble the symbolic JVM instructions  your 
compiler generates using the Jasmin assembler. Jasmin documentation is available on its 
homepage, which is linked to the class homepage (under “Useful Programming Tools”). The JVM 
instruction set (often called “bytecodes”) is also described in the Jasmin documentation. Jasmin 
produces a standard format “.class” file, which can be executed using java, just as compiled 
Java programs are. 

You will initiate code generation by creating an instance of class CodeGenerating by calling 
the constructor 

 

new CodeGenerating(PrintStream asmFile) 
 

The file parameter is the file into which JVM instructions are to be written. You then call the 
boolean-valued method startCodeGen(root) where root is the root of the AST built by the 
parser. This method will begin traversal of the AST, generating JVM code into asmFile. 

Your code generator is only expected to handle type-correct programs; don’t worry about 
translating type-incorrect programs. If any errors are detected during code generation, 
startCodeGen should return false; the contents of asmFile need not be valid. If no errors 
are detected by the code generator, true is returned and the contents of asmFile should be a 
valid JVM assembly program that can be assembled using jasmin. 



Consider the following simple CSX program: 
 

class simple{ 

void main() { 

int a; 

read(a); 
print("Answer = ", 2*a+1, '\n'); 

} } 
 

This program might be translated into the following JVM assembler code: 
 

.class public simple ; This is a public class named simple 

.super java/lang/Object ; The superclass is Object 
 

; JVM interpreters start execution at main(String[]) 
.method public static main([Ljava/lang/String;)V 

invokestatic simple/main()V ; call main() 

return ; then return 

.limit stack 2 ; Max stack depth needed 

.end method ; End of body of main(String[]) 
 

.method public static main()V ; Beginning of main() 

invokestatic CSXLib/readInt()I ; Call CSXLib.readInt() 

istore 0 ; Store int read into local 0 (a) 

ldc "Answer = " ; Push string literal onto stack 
; Call CSXLib.printString(String) 

invokestatic  CSXLib/printString(Ljava/lang/String;)V 

ldc 2 ; Push 2 onto stack 

iload 0 ; Push local 0 (a) onto stack 

imul ; Multiply top two stack values 

ldc 1 ; Push 1 onto stack 
iadd ; Add top two stack values 

invokestatic CSXLib/printInt(I)V ; Call CSXLib.printInt(int) 

ldc 10 ; Push 10 ('\n') onto stack 

invokestatic CSXLib/printChar(C)V ; Call CSXLib.printChar(char) 

return ; return from main() 

 
.limit stack 25 ; Max stack depth needed(overestimate) 
.limit locals 1 ; Number of local variables used 

.end method ; End of body of main() 
 

This program would be written into file simple.j, since the name of the CSX class is simple. 
The following command could be used to assemble the program into simple.class: 

jasmin simple.j 
simple.class would then be executed using the command 

java simple 
 

 2 of 6 



3 of 6 	  

Translating AST Nodes 
The following table outlines what your code generator is expected to do for each kind of AST node. 
Details of the translation process will be discussed in class and in handouts. Further information 
may also be found in the class notes. 

 
Kind of AST Node Code Generator Action 

classNode Generate beginning of class; 
generate body of main(String[]); 
translate members. 

memberDeclsNode Translate fields, then methods. 

fieldDeclsNode Translate thisField, then moreFields. 

methodDeclsNode Translate thisMethod, then moreMethods. 

varDeclNode Allocate a field or local variable index for varName. 
If initValue is non-null, translate it and generate code to store 
initValue into varName. 

constDeclNode Allocate a field or local variable index for constName; 
translate constValue; 
generate code to store constValue into constName. 

arrayDeclNode Allocate a field or local variable index for arrayName;  
generate code to allocate an array of type elementType whose 
size is arraySize; generate code to store a reference to the 
array in arrayName’s field or local variable. 

methodDeclNode Generate the method’s prologue; 
translate args; 
translate decls; 
translate stmts; 
generate the method’s epilogue. 

argDeclsNode Translate thisDecl, then moreDecls. 

valArgDeclNode Allocate a local variable index to hold the value of a scalar param- 
eter. 

refArrayDeclNode Allocate a local variable index to hold a reference to an array 
parameter. 

stmtsNode Translate thisStmt, then moreStmts. 

asgNode If source is an array, generate code to clone it and save a refer- 
ence to the clone in target. 
If source is a string literal, generate code to convert it to a char- 
acter array and save a reference to the array in target. 
If target is an indexed array, generate code to push a reference 
to the array (using varName), then translate target.sub- 
scriptVal. 
Translate source; 
generate code to store source’s value in target. 



	  

 

Kind of AST Node Code Generator Action 

incrementNode 

decrementNode 

If target.subscriptVal is null generate code to push tar- 
get.varName’s value onto stack. Push the integer 1 and gener- 
ate an iadd or isub. Then store stack top into 
target.varName. 

Otherwise push the array reference stored at target.varName. 
Translate target.subscriptVal. Duplicate top two stack 
values using dup2. Generate an iaload or caload. Then push 
integer 1 and generate iadd or isub. Finally, generate an ias- 
tore or castore 

ifThenNode Translate condition; 
generate code to conditionally branch around thenPart; trans- 
late thenPart; 
generate a jump past elsePart; 
translate elsePart. 

whileLoopNode Create assembler labels for head-of-loop and loop-exit. 
If label is non-null store head-of-loop and loop-exit in label’s 
symbol table entry. 
Generate head-of-loop label; 
translate condition; 
generate a conditional branch to loop-exit label; 
translate loopBody; 
generate a jump to head-of-loop; 
generate loop-exit label. 

readNode Generate a call to CSXLib.readInt() or CSXLib.read- 
Char() depending on the type of targetVar; 
generate a store into targetVar; 
translate moreReads. 

printNode Translate outputValue; generate a call to 
CSXLib.printString(String) or CSX- 
Lib.printInt(int) or CSXLib.printChar(char) or 
CSXLib.printBool(boolean) or CSXLib.print- 
CharArray(char[]), depending on the type of out- 
putValue; 
translate morePrints. 

callNode Translate procArgs; 
generate a static call to procName. 

returnNode If returnVal is non-null then 
translate it and generate an ireturn; 
otherwise generate a return. 

breakNode Generate a jump to the loop-exit label stored in label’s symbol 
table entry. 

continueNode Generate a jump to the head-of-loop label stored in label’s sym- 
bol table entry. 

blockNode Translate decls; 
translate stmts; 

 
 

 4 of 6 



5 of 6 	  

 

Kind of AST Node Code Generator Action 

argsNode Translate argVal; 
translate moreArgs. 

binaryOpNode If operator is && or ||   
translate like an ifThenNode                                  
Otherwise:  
translate leftOperand; 
translate rightOperand; 
generate JVM instruction corresponding to operatorCode. 

unaryOpCode Translate operand; 
generate JVM instruction corresponding to operatorCode. 

fctCallNode Translate functionArgs; 
generate a static call to procName. 

castNode If resutltType is bool and operand is an int or char 
then if operand is non-zero generate code to convert it to 1 
(which represents true). 
If resutltType is char and operand is an int then gener- 
ate code to extract the rightmost 7 bits of operand. 

name If subscriptVal is null 
generate code to push value at varName’s field name or local 
variable index. 
Otherwise, generate code to push the array reference stored at 
varName’s field name or local variable index; 
translate subscriptVal; 
generate an iaload or baload or caload based on var- 
Name’s element type. 

intLitNode Generate code to push intval onto the stack. 

bitStringNode Generate code to push intValue onto the stack. 

charLitNode Generate code to push charval onto the stack. 

trueNode Generate an iconst_1. 

falseNode Generate an iconst_0. 

strLitNode Push strval onto stack using ldc instruction. 

nullNode Do nothing. 

intTypeNode Do nothing. 

boolTypeNode Do nothing. 

charTypeNode Do nothing. 

identNode Do nothing (name or index of identifier is used by parent nodes 
based on context). 

 

How to Proceed 
Start with simple constructs like read, print, assignment and simple expressions.  Implement harder 
constructs like ifs, loops and methods after the simpler constructs are working. For each 
construct you implement, you have two things to do. First, you must decide what JVM code 
you want to generate. Try out the code you selected by creating (by hand) simple Jasmin assembler 
programs. Run them to verify that the code you selected really works. 



6 of 6 	  

Once you know the code you selected is viable, modify your code generator to generate that code. 
Look at the output of your code generator (the name.j file) to verify that what is generated looks 
correct. If the output looks correct, run it through Jasmin and java to verify that it is correct. 

Once you’ve implemented a few simple constructs, you’ll see how it all works. You can then add 
additional features until all of CSX is supported. 

If you’re in doubt as to what JVM code to generate, here’s a useful trick. CSX programs closely 
correspond to Java classes (with all fields and methods declared static). Create a Java program that’s 
equivalent to a particular CSX program. Compile the Java program using your favourite Java 
compiler (perhaps javac). Then run 

javap -c file 

where file.class is the class file created by javac. This will show you the JVM instructions 
selected by the Java compiler (in a slightly different format than that used by Jasmin). In most cases 
these instructions could be generated by your compiler to translate the CSX program in question. 

Be careful that the JVM instructions that you generate don’t try to access operands that aren’t on the 
stack. Such instructions are illegal and can cause the Java interpreter (java) to crash. 

 
What to hand in 

 
As was the case for Project 4, your program should expect the name of a CSX program to be compiled 
on its command line (if no program name is found, a GUI will prompt you to enter one). If the CSX 
program is invalid, appropriate error messages should be written to standard out- put. Otherwise a 
translation of the CSX program should be placed in name.j where name is the program’s class 
name. name.j should be executable using jasmin and then java. 

Create a folder (directory) and name it using your first and last name (e.g., CharlesFischer). 
Copy into this folder a README file, a build.xml file and all source files necessary to build an 
executable version of your program (.java source files, a csx.jlex file and a csx.cup file). 
Do not hand in any.class files. Name the class that contains your main method CSX.java. 
Electronically submit your folder to the Project 5 tab on Canvas. You may compress your handin 
folder into a single file using zip if you wish. Partners should submit only one solution. The other 
partner should submit only a README file identifying the partnership. 

You   may   test    your    CSX    compiler    using    the    test    programs    at    this    URL:  
http://www.cs.wisc.edu/~fischer/cs536.f18/course/proj5/tests/. These programs are named test-
00.csx, test-01.csx,.... Create a file named CSXtests that contains the results 
produced by compiling, assembling and running each of these programs. We’ll also run your 
compiler on a variety of our own test programs. 

If you wish to claim extra credit, clearly state (in the README file) what you’ve added and include 
examples of its operation. 


