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A very flexible storage allocation 
mechanism is heap allocation. 
Any number of data objects can be 
allocated and freed in a memory 
pool, called a heap. 
Heap allocation is enormously 
popular. Almost all non- trivial Java 
and C programs use new or 
malloc. 



Heap Allocation 
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A request for heap space may be 
explicit or implicit. 
An explicit request involves a call to 
a routine like new or malloc. 
An explicit pointer to the newly 
allocated space is returned. 

Some languages allow the 
creation of data objects of 
unknown size. In Java, the + 
operator is overloaded to 
represent string catenation. 

The expression Str1 + Str2 creates 
a new string representing the 
catenation of strings Str1 and Str2. 
There is no compile- time bound on 
the sizes of Str1 and Str2, so heap 
space must be implicitly allocated to 
hold the newly created string. 



Whether allocation is explicit or 
implicit, a heap allocator is 
needed. This routine takes a size 
parameter and examines unused 
heap space to find space that 
satisfies the request. 
A heap block is returned. This 
block must be big enough to 
satisfy the space request, but it 
may well be bigger. 
Heaps blocks contain a header 
field that contains the size of the 
block as well as bookkeeping 
information. 
The complexity of heap allocation 
depends in large measure on how 
deallocation is done. 
Initially, the heap is one large 
block of unallocated memory. 
Memory requests can be satisfied 
by simply modifying an “end of 
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heap” pointer, very much as a 
stack is pushed by modifying a 
stack pointer. 
Things get more involved when 
previously allocated heap objects 
are deallocated and reused. 
Deallocated objects are stored for 
future reuse on a free space list. 
When a request for n bytes of 
heap space is received, the heap 
allocator must search the free 
space list for a block of sufficient 
size. There are many search 
strategies that might be used: 
•  Best Fi t 

The free space list is searched for 
the free block that matches most 
closely the requested size. This 
minimizes wasted heap space, the 
search may be quite slow. 
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•  First Fi t 
The first free heap block of 
sufficient size is used. Unused 
space within the block is split off 
and linked as a smaller free space 
block. This approach is fast, but 
may “clutter” the beginning of the 
free space list with a number of 
blocks too small to satisfy most 
requests. 

•  Next Fi t 
This is a variant of first fit in which 
succeeding searches of the free 
space list begin at the position 
where the last search ended. The 
idea is to “cycle through” the entire 
free space list rather than always 
revisiting free blocks at the head of 
the list. 
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•  Segregated Free Space Lists 
There is no reason why we must 
have only one free space list. An 
alternative is to have several, 
indexed by the size of the free 
blocks they contain. 
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Deallocation Mechanisms 
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Allocating heap space is fairly 
easy. But how do we deallocate 
heap memory no longer in use? 
Sometimes we may never need to 
deallocate! If heaps objects are 
allocated infrequently or are very 
long- lived, deallocation is 
unnecessary. We simply fill heap 
space with “in use” objects. 
Virtual memory & paging may 
allow us to allocate a very large 
heap area. 
On a 64- bit machine, if we 
allocate heap space at 1 MB/sec, 
it will take 500,000 years to span 
the entire address space! 
Fragmentation of a very large 
heap space commonly forces us 
to include some form of reuse of 
heap space. 



User-controlled Deallocation 
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Deallocation can be manual or 
automatic. Manual deallocation 
involves explicit programmer- 
initiated calls to routines like 
free(p) or delete(p). 
The object is then added to a 
free- space list for subsequent 
reallocation. 
It is the programmer’s 
responsibility to free unneeded 
heap space by executing 
deallocation commands. The heap 
manager merely keeps track of 
freed space and makes it available 
for later reuse. 
The really hard decision—when 
space should be freed—is shifted 
to the programmer, possibly 
leading to catastrophic dangling 
pointer errors. 



Consider the following C program 
fragment 
q = p = malloc(1000);

© 
CS 536  Spring 2015 40

1 

free(p);
/* code 
q[100] =

containing more malloc’s */ 
1234;

After p is freed, q is a dangling 
pointer. q points to heap space 
that is no longer considered 
allocated. 
Calls to malloc may reassign the 
space pointed to by q. 
Assignment through q is illegal, 
but this error is almost never 
detected. 
Such an assignment may change 
data that is now part of another 
heap object, leading to very subtle 
errors. It may even change a 
header field or a free- space link, 
causing the heap allocator itself 
to fail! 



Automatic Garbage Collection 
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The alternative to manual 
deallocation of heap space is 
garbage collection. 
Compiler- generated code tracks 
pointer usage. When a heap 
object is no longer pointed to, it is 
garbage, and is automatically 
collected for subsequent reuse. 
Many garbage collection 
techniques exist. Here are some 
of the most important 
approaches: 



Reference Counting 
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This is one of the oldest and 
simplest garbage collection 
techniques. 

A reference count field is added to 
each heap object. It counts how 
many references to the heap object 
exist. When an object’s reference 
count reaches zero, it is garbage 
and may collected. 
The reference count field is 
updated whenever a reference is 
created, copied, or destroyed. 
When a reference count reaches 
zero and an object is collected, all 
pointers in the collected object are 
also be followed and corresponding 
reference counts decremented. 



As shown below, reference 
counting has difficulty with 
circular structures. If pointer P is 

Globa l  pointer  P
R e ference  C o un t =  2  

L ink  
Da ta 

 
R e ference  C o un t =  1  

L ink  
Da ta  

 

set to null, the object’s reference 
count is reduced to 1. Both 
objects have a non- zero count, 
but neither is accessible through 
any external pointer. The two 
objects are garbage, but won’t be 
recognized as such. 
If circular structuresare common, 
then an auxiliary technique, like 
mark- sweep collection, is needed 
to collect garbage that reference 
counting misses. 
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Mark-Sweep Collection 
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Many collectors, including mark & 
sweep, do nothing until heap 
space is nearly exhausted. 
Then it executes a marking phase 
that identifies all live heap 
objects. 
Starting with global pointers and 
pointers in stack frames, it marks 
reachable heap objects. Pointers 
in marked heap objects are also 
followed, until all live heap 
objects are marked. 
After the marking phase, any 
object not marked is garbage that 
may be freed. We then sweep 
through the heap, collecting all 
unmarked objects. During the 
sweep phase we also clear all 
marks from heap objects found to 
be still in use. 



Mark- sweep garbage collection is 
illustrated below. 

Objects 1 and 3 are marked 
because they are pointed to by 
global pointers. Object 5 is 
marked because it is pointed to by 
object 3, which is marked. Shaded 
objects are not marked and will be 
added to the free- space list. 
In any mark- sweep collector, it is 
vital that we mark all accessible 
heap objects. If we miss a pointer, 
we may fail to mark a live heap 
object and later incorrectly free it. 
Finding all pointers is a bit tricky 
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Global pointer Global pointer 
Internal pointer 

Object 1 Object 3 Object 5 



in languages like Java, C and C
+ + , that have pointers mixed 
with other types within data 
structures, implicit pointers to 
temporaries, and so forth. 
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Considerable information about 
data structures and frames must be 
available at run- time for this 
purpose. In cases where we can’t be 
sure if a value is a pointer or not, we 
may need to do conservative 
garbage collection. 
In mark- sweep garbage collection 
all heap objects must be swept. 
This is costly if most objects are 
dead. We’d prefer to examine only 
live objects. 



Compaction 
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After the sweep phase, live heap 
objects are distributed 
throughout the heap space. This 
can lead to poor locality. If live 
objects span many memory 
pages, paging overhead may be 
increased. Cache locality may be 
degraded too. 
We can add a compaction phase 
to mark- sweep garbage 
collection. 
After live objects are identified, 
they are placed together at one 
end of the heap. This involves 
another tracing phase in which 
global, local and internal heap 
pointers are found and adjusted 
to reflect the object’s new 
location. 



Compaction merges together 
freed objects into one large block 
of free heap space. Fragments are 
no longer a problem. 
Moreover, heap allocation is 
greatly simplified. Using an “end 
of heap” pointer, whenever a heap 
request is received, the end of 
heap pointer is adjusted, making 
heap allocation no more complex 
than stack allocation. 

Pointers are adjusted by the total 
size of all garbage objects 
between the start of the heap and 
the current object. This is 
illustrated below: 

Global pointer Adjusted Global pointer 
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Adjusted internal pointer 

Object 1 Object 3 Object 5 



Because pointers are adjusted, 
compaction may not be suitable 
for languages like C and C+ + , in 
which it is difficult to 
unambiguously identify pointers. 
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