
CS 536

©
CS 536 Spring 2015 1

Introduction to
Programming Languages

and Compilers
Charles N. Fischer

Lecture 12

Heap Management

©
CS 536 Spring 2015 39

3

A very flexible storage allocation
mechanism is heap allocation.
Any number of data objects can be
allocated and freed in a memory
pool, called a heap.
Heap allocation is enormously
popular. Almost all non- trivial Java
and C programs use new or
malloc.

Heap Allocation

©
CS 536 Spring 2015 39

4

A request for heap space may be
explicit or implicit.
An explicit request involves a call to
a routine like new or malloc.
An explicit pointer to the newly
allocated space is returned.

Some languages allow the
creation of data objects of
unknown size. In Java, the +
operator is overloaded to
represent string catenation.

The expression Str1 + Str2 creates
a new string representing the
catenation of strings Str1 and Str2.
There is no compile- time bound on
the sizes of Str1 and Str2, so heap
space must be implicitly allocated to
hold the newly created string.

Whether allocation is explicit or
implicit, a heap allocator is
needed. This routine takes a size
parameter and examines unused
heap space to find space that
satisfies the request.
A heap block is returned. This
block must be big enough to
satisfy the space request, but it
may well be bigger.
Heaps blocks contain a header
field that contains the size of the
block as well as bookkeeping
information.
The complexity of heap allocation
depends in large measure on how
deallocation is done.
Initially, the heap is one large
block of unallocated memory.
Memory requests can be satisfied
by simply modifying an “end of

©
CS 536 Spring 2015 39

5

heap” pointer, very much as a
stack is pushed by modifying a
stack pointer.
Things get more involved when
previously allocated heap objects
are deallocated and reused.
Deallocated objects are stored for
future reuse on a free space list.
When a request for n bytes of
heap space is received, the heap
allocator must search the free
space list for a block of sufficient
size. There are many search
strategies that might be used:
•  Best Fi t

The free space list is searched for
the free block that matches most
closely the requested size. This
minimizes wasted heap space, the
search may be quite slow.

©
CS 536 Spring 2015 39

6

•  First Fi t
The first free heap block of
sufficient size is used. Unused
space within the block is split off
and linked as a smaller free space
block. This approach is fast, but
may “clutter” the beginning of the
free space list with a number of
blocks too small to satisfy most
requests.

•  Next Fi t
This is a variant of first fit in which
succeeding searches of the free
space list begin at the position
where the last search ended. The
idea is to “cycle through” the entire
free space list rather than always
revisiting free blocks at the head of
the list.

©
CS 536 Spring 2015 39

7

•  Segregated Free Space Lists
There is no reason why we must
have only one free space list. An
alternative is to have several,
indexed by the size of the free
blocks they contain.

©
CS 536 Spring 2015 39

8

Deallocation Mechanisms

©
CS 536 Spring 2015 39

9

Allocating heap space is fairly
easy. But how do we deallocate
heap memory no longer in use?
Sometimes we may never need to
deallocate! If heaps objects are
allocated infrequently or are very
long- lived, deallocation is
unnecessary. We simply fill heap
space with “in use” objects.
Virtual memory & paging may
allow us to allocate a very large
heap area.
On a 64- bit machine, if we
allocate heap space at 1 MB/sec,
it will take 500,000 years to span
the entire address space!
Fragmentation of a very large
heap space commonly forces us
to include some form of reuse of
heap space.

User-controlled Deallocation

©
CS 536 Spring 2015 40

0

Deallocation can be manual or
automatic. Manual deallocation
involves explicit programmer-
initiated calls to routines like
free(p) or delete(p).
The object is then added to a
free- space list for subsequent
reallocation.
It is the programmer’s
responsibility to free unneeded
heap space by executing
deallocation commands. The heap
manager merely keeps track of
freed space and makes it available
for later reuse.
The really hard decision—when
space should be freed—is shifted
to the programmer, possibly
leading to catastrophic dangling
pointer errors.

Consider the following C program
fragment
q = p = malloc(1000);

©
CS 536 Spring 2015 40

1

free(p);
/* code
q[100] =

containing more malloc’s */
1234;

After p is freed, q is a dangling
pointer. q points to heap space
that is no longer considered
allocated.
Calls to malloc may reassign the
space pointed to by q.
Assignment through q is illegal,
but this error is almost never
detected.
Such an assignment may change
data that is now part of another
heap object, leading to very subtle
errors. It may even change a
header field or a free- space link,
causing the heap allocator itself
to fail!

Automatic Garbage Collection

©
CS 536 Spring 2015 40

2

The alternative to manual
deallocation of heap space is
garbage collection.
Compiler- generated code tracks
pointer usage. When a heap
object is no longer pointed to, it is
garbage, and is automatically
collected for subsequent reuse.
Many garbage collection
techniques exist. Here are some
of the most important
approaches:

Reference Counting

©
CS 536 Spring 2015 40

3

This is one of the oldest and
simplest garbage collection
techniques.

A reference count field is added to
each heap object. It counts how
many references to the heap object
exist. When an object’s reference
count reaches zero, it is garbage
and may collected.
The reference count field is
updated whenever a reference is
created, copied, or destroyed.
When a reference count reaches
zero and an object is collected, all
pointers in the collected object are
also be followed and corresponding
reference counts decremented.

As shown below, reference
counting has difficulty with
circular structures. If pointer P is

Globa l pointer P
R e ference C o un t = 2

L ink
Da ta

R e ference C o un t = 1

L ink
Da ta

set to null, the object’s reference
count is reduced to 1. Both
objects have a non- zero count,
but neither is accessible through
any external pointer. The two
objects are garbage, but won’t be
recognized as such.
If circular structuresare common,
then an auxiliary technique, like
mark- sweep collection, is needed
to collect garbage that reference
counting misses.

©
CS 536 Spring 2015 40

4

Mark-Sweep Collection

©
CS 536 Spring 2015 40

5

Many collectors, including mark &
sweep, do nothing until heap
space is nearly exhausted.
Then it executes a marking phase
that identifies all live heap
objects.
Starting with global pointers and
pointers in stack frames, it marks
reachable heap objects. Pointers
in marked heap objects are also
followed, until all live heap
objects are marked.
After the marking phase, any
object not marked is garbage that
may be freed. We then sweep
through the heap, collecting all
unmarked objects. During the
sweep phase we also clear all
marks from heap objects found to
be still in use.

Mark- sweep garbage collection is
illustrated below.

Objects 1 and 3 are marked
because they are pointed to by
global pointers. Object 5 is
marked because it is pointed to by
object 3, which is marked. Shaded
objects are not marked and will be
added to the free- space list.
In any mark- sweep collector, it is
vital that we mark all accessible
heap objects. If we miss a pointer,
we may fail to mark a live heap
object and later incorrectly free it.
Finding all pointers is a bit tricky

©
CS 536 Spring 2015 40

6

Global pointer Global pointer
Internal pointer

Object 1 Object 3 Object 5

in languages like Java, C and C
+ + , that have pointers mixed
with other types within data
structures, implicit pointers to
temporaries, and so forth.

©
CS 536 Spring 2015 40

7

Considerable information about
data structures and frames must be
available at run- time for this
purpose. In cases where we can’t be
sure if a value is a pointer or not, we
may need to do conservative
garbage collection.
In mark- sweep garbage collection
all heap objects must be swept.
This is costly if most objects are
dead. We’d prefer to examine only
live objects.

Compaction

©
CS 536 Spring 2015 40

8

After the sweep phase, live heap
objects are distributed
throughout the heap space. This
can lead to poor locality. If live
objects span many memory
pages, paging overhead may be
increased. Cache locality may be
degraded too.
We can add a compaction phase
to mark- sweep garbage
collection.
After live objects are identified,
they are placed together at one
end of the heap. This involves
another tracing phase in which
global, local and internal heap
pointers are found and adjusted
to reflect the object’s new
location.

Compaction merges together
freed objects into one large block
of free heap space. Fragments are
no longer a problem.
Moreover, heap allocation is
greatly simplified. Using an “end
of heap” pointer, whenever a heap
request is received, the end of
heap pointer is adjusted, making
heap allocation no more complex
than stack allocation.

Pointers are adjusted by the total
size of all garbage objects
between the start of the heap and
the current object. This is
illustrated below:

Global pointer Adjusted Global pointer

©
CS 536 Spring 2015 40

9

Adjusted internal pointer

Object 1 Object 3 Object 5

Because pointers are adjusted,
compaction may not be suitable
for languages like C and C+ + , in
which it is difficult to
unambiguously identify pointers.

©
CS 536 Spring 2015 41

0

