
CS 536

©
CS 536 Spring 2015 1

Introduction to
Programming Languages

and Compilers
Charles N. Fischer

Lecture 14

Jump Code

©
CS 536 Spring 2015 384

The JVM code we generate for
the following if statement is
quite simple and efficient.
if (B)
A = 1;

else
A = 0;

L2:

iload 2 ; Push local #2 (B) onto stack
ifeq L1 ; Goto L1 if B is 0 (false)
iconst_1 ; Push literal 1 onto stack
istore 1 ; Store stk top into local #1(A)
goto L2 ; Skip around else part

L1: iconst_0 ; Push literal 0 onto stack
istore 1 ; Store stk top into local #1(A)

In contrast, the code generated
for

©
CS 536 Spring 2015 385

if (F == G)
A = 1;

else
A = 0;

(where F and G are local
variables of type integer)
is significantly more complex:

L1:
iconst_1

L2:
; Push 1 (true) onto the stack

L3:

L4:

iload 4 ; Push local #4 (F) onto stack

iload 5
if_icmpeq L1

;
;
Push
Goto

local
if

#5 (G) onto stack
F == G

iconst_0
goto L2

;
;
Push
Skip

0 (false) onto stack
around next instruction

ifeq L3 ; Goto L3 if F==G is 0 (false)
iconst_1 ; Push literal 1 onto stack
istore 1
goto L4

;
;

Store top into local #1(A)
Skip around else part

iconst_0 ; Push literal 0 onto stack
istore 1 ; Store top into local #1(A)

The problem is that in the JVM
relational operators don’t store
a boolean value (0 or 1) onto
the stack. Rather, instructions
like if_icmpeq do a conditional
branch.

©
CS 536 Spring 2015 386

So we branch to a push of 0 or
1 just so we can test the value
and do a second conditional
branch to the else part of the
conditional!
 Why did the JVM designers
create such an odd way of
evaluating relational
operators?

A moment’s reflection shows
that we rarely actually want the
value of a relational or logical
expression. Rather, we usually

only want to do a conditional
branch based on the
expression’s value in the
context of a conditional or
looping statement.

Jump code is an alternative
representation of boolean
values. Rather than placing a
boolean value directly on the
stack, we generate a
conditional branch to either a
t rue label or a false label.
These labels are defined at the
places where we wish execution
to proceed once the boolean
expression’s value is known.

©
CS 536 Spring 2015 387

Returning to our previous
example, we can generate F==G
in jump code form as

©
CS 536 Spring 2015 388

The label L1 is the “false label.”
We branch to it if the
expression F == G is false;
otherwise, we “fall through,”
executing the code that
follows. We can then generate
the then part, defining L1 at the
point where the else part is to
be computed. The code we
generate is:

iload 4 ; Push local #4 (F) onto stack
iload5 ; Push local #5 (G) onto stack
if_icmpne L1 ; Goto L1 if F != G

©
CS 536 Spring 2015 389

This instruction sequence is
significantly shorter (and
faster) than our original
translation. Jump code is
routinely used in ifs, whiles and
fors where we wish to alter
flow- of- control rather than
compute an explicit boolean
value.

iload 4

iload5

;
;
Push local #4 (F) onto stack

Push local #5 (G) onto stack
if_icmpne L1 ; Goto L1 if F != G
iconst_1
istore 1

;
;
Push literal 1 onto stack
Store top into local #1(A)

goto L2 ; Skip around else part
L1:
iconst_0
istore 1

;
;

Push literal 0 onto stack
Store top into local #1(A)

L2:

Jump code comes in two forms,
JumpIfTrue and JumpIfFalse.
In JumpIfTrue form, the code
sequence does a conditional
jump (branch) if the expression
is true, and “falls through” if
the expression is false.
Analogously, in JumpIfFalse
form, the code sequence does a
conditional jump (branch) if the
expression is false, and “falls
through” if the expression is
true. We have two forms
because different contexts
prefer one or the other.
It is important to emphasize
that even though jump code
looks unusual, it is just an
alternative representation of
boolean values. We can convert

©
CS 536 Spring 2015 390

a boolean value on the stack to
jump code by conditionally
branching on its value to a true
or false label.
Similarly, we convert from jump
code to an explicit boolean
value, by placing the jump
code’s true label at a load of 1
and the false label at a load of
0.

©
CS 536 Spring 2015 391

Short-Circuit Evaluation

©
CS 536 Spring 2015 392

Our translation of the && and
|| operators parallels that of all
other binary operators:
evaluate both operands onto
the stack and then do an “and”
or “or” operation.
But in C, C+ + , C#, Java (and
most other languages), && and
|| are handled specially.
These two operators are
defined to work in “short
circuit” mode. That is, if the left
operand is sufficient to
determine the result of the
operation, the right operand
isn’t evaluated.
In particular a&&b is defined as
if a then b else false.

Similarly a||b is defined as

©
CS 536 Spring 2015 393

if a then true else b.
The conditional evaluation of
the second operand isn’t just
an optimization—it’s essential
for correctness. For example, in
(a!=0)&&(b/a>100)
we would perform a division by
zero if the right operand were
evaluated when a==0.
Jump code meshes nicely with
the short- circuit definitions of
&& and ||, since they are
already defined in terms of
conditional branches.
In particular if exp1 and exp2
are in jump code form, then we
need generate no further code
to evaluate exp1&&exp2.

To evaluate &&, we first
translate exp1 into JumpIfFalse
form, followed by exp2. If exp1
is false, we jump out of the
whole expression. If exp1 is
true, we fall through to exp2
and evaluate it. In this way,
exp2 is evaluated only when
necessary (when exp1 is true).

©
CS 536 Spring 2015 394

Similarly, once exp1 and exp2
are in jump code form, exp1||
exp2 is easy to evaluate. We
first translate exp1 into
JumpIfTrue form, followed by
exp2. If exp1 is true, we jump
out of the whole expression. If
exp1 is false, we fall through to
exp2 and evaluate it. In this
way, exp2 is evaluated only
when necessary (when exp1 is
false).

©
CS 536 Spring 2015 395

As an example, let’s consider

©
CS 536 Spring 2015 396

if ((A>0)||(B<0 && C==10))
A = 1;

else
A = 0;

Assume A, B and C are all local
integers, with indices of 1, 2
and 3 respectively.
We’ll produce a JumpIfFalse
translation, jumping to label F
(the else part) if the expression
is false and falling through to
the then part if the expression
is true.
Code generators for relational
operators can be easily
modified to produce both kinds
of jump code—we can either
jump if the relation holds

(JumpIfTrue) or jump if it
doesn’t hold (JumpIfFalse). We
produce the following JVM code
sequence which is quite
compact and efficient.

©
CS 536 Spring 2015 397

iload 1
ifgt L1
iload 2
ifge F
iload 3
bipush 10

; Push local #1 (A) onto stack
; Goto L1 if A > 0 is true
; Push local #2 (B) onto stack
; Goto F if B < 0 is false
; Push local #3 (C) onto stack
; Push
Goto

a byte
F if C

immediate (10)
!= 10if_icmpne F ;

L1:

goto L2 ; Skip around else part
F:

L2:

First A is tested. If it is greater
than zero, the control
expression must be true, so we
skip the rest of the expression
and execute the then part.

iconst_1 ; Push literal 1 onto stack
istore 1 ; Store top into local #1(A)

iconst_0 ; Push literal 0 onto stack
istore 1 ; Store top into local #1(A)

Otherwise, we continue
evaluating the control
expression.
We next test B. If it is greater
than or equal to zero, B<0 is
false, and so is the whole
expression. We therefore
branch to label F and execute
the else part.
Otherwise, we finally test C.
If C is not equal to 10, the
control expression is false, so
we branch to label F and
execute the else part.
If C is equal to 10, the control
expression is true, and we fall
through to the then part.

©
CS 536 Spring 2015 398

For Loops

For loops are translated much
like while loops.
The AST for a for loop adds
subtrees corresponding to loop
initialization and increment.
For loops are expected to
iterate many times. Therefore
after executing the loop
initialization, we skip past the
loop body and increment code
to reach the termination

condition
forNode

increment

Exp Stmt Stmts

initializer loopBody

Stmt

©
CS 536 Spring 2015 399

condition, which is placed at
the bottom of the loop.

©
CS 536 Spring 2015 400

{Initialization code}
goto L1

L2:
{Code for loop body}
{Increment code}
L1:

{Condition code}
ifne L2 ; branch to L2 if true

cg(){ // for forLoopNode
String
String

skip = genLab();
top = genLab();

initializer.cg();
branch(skip);
defineLab(top);
loopBody.cg();
increment.cg();
defineLab(skip);
condition.cg();
branchNZ(top);

}

As an example, consider this
loop (i and j are locals with
variable indices of 1 and 2)

©
CS 536 Spring 2015 401

for (i=100;i!=0;i--)

{ j = i;

}

The JVM code we generate is

goto L1

L2:

; Skip to exit test

iconst_1

isub

istore 1

L1:

; Push 1

; Compute i-1

; Store i-1 into #1 (i)

bipush 100 ; Push 100
istore 1 ; Store into #1 (i)

iload 1 ; Push local #1 (i)

istore 2

iload 1

;

;
Store into

Push local

#2

#1

(j)

(i)

iload 1 ; Push local #1 (i)
ifne L2 ; Goto L2 if i is != 0

Java, C# and C++ allow a local
declaration of a loop index as
part of initialization, as
illustrated by the following for
loop

©
CS 536 Spring 2015 402

for (int i=100; i!=0; i--)
{ j = i;

}

Local declarations are
automatically handled during
code generation for the
initialization expression. A
local variable is declared within
the current frame with a scope
limited to the body of the loop.
Otherwise translation is
identical.

