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Read Chapter 3 of 
Craf t ing  a Compi ler. 



The Structure of a Compiler 
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A compiler performs two major 
tasks: 

•  Analysis of the source program 
being compiled 

•  Synthesis of a target program 

Almost all modern compilers are 
syntax- directed: The compilation 
process is driven by the syntactic 
structure of the source program. 
A parser builds syntactic structure 
out of tokens, the elementary 
symbols of programming language 
syntax. Recognition of syntactic 
structure is a major part of the 
analysis task. 



Semantic analysis examines the 
meaning (semantics) of the 
program. Semantic analysis 
plays a dual role. 
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It finishes the analysis task by 
performing a variety of 
correctness checks (for 
example, enforcing type and 
scope rules). Semantic analysis 
also begins the synthesis 
phase. 
 

The synthesis phase may 
translate source programs into 
some intermediate 
representation (IR) or it may 
directly generate target code. 



If an IR is generated, it then 
serves as input to a code 
generator component that 
produces the desired machine- 
language program. The IR may 
optionally be transformed by an 
optimizer so that a more 
efficient program may be 
generated. 
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The Structure of a Syntax-Directed Compiler 



Scanner 
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The scanner reads the source program, 
character by character. It groups 
individual characters into tokens 
(identifiers, integers, reserved words, 
delimiters, and so on). When 
necessary, the actual character string 
comprising the token is also passed 
along for use by the semantic phases. 
The scanner: 

•  Puts the program into a compact 
and uniform format (a stream of 
tokens). 

•  Eliminates unneeded information 
(such as comments). 

•  Sometimes enters preliminary 
information into symbol tables (for 



example, to register the presence 
of a particular label or identifier). 

•  Optionally formats and lists the 
source program 

Building tokens is driven by 
token descriptions defined 
using regular expression 
notation. 
Regular expressions are a 
formal notation able to 
describe the tokens used in 
modern programming 
languages. Moreover, they can 
drive the automatic generation 
of working scanners given only 
a specification of the tokens. 
Scanner generators (like Lex, 
Flex and JLex) are valuable 
compiler- building tools. 
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Parser 
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Given a syntax specification (as 
a context- free grammar, CFG), 
the parser reads tokens and 
groups them into language 
structures. 
Parsers are typically created 
from a CFG using a parser 
generator (like Yacc, Bison or 
Java CUP). 
The parser verifies correct 
syntax and may issue a syntax 
error message. 
As syntactic structure is 
recognized, the parser usually 
builds an abstract syntax tree 
(AST), a concise representation 
of program structure, which 
guides semantic processing. 



Type Checker 
(Semantic Analysis) 
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The type checker checks the static 
semantics of each AST node. It 
verifies that the construct is legal 
and meaningful (that all 
identifiers involved are declared, 
that types are correct, and so on). 
If the construct is semantically 
correct, the type checker 
“decorates” the AST node, adding 
type or symbol table information 
to it. If a semantic error is 
discovered, a suitable error 
message is issued. 
Type checking is purely 
dependent on the semantic rules 
of the source language. It is 
independent of the compiler’s 
target machine. 



Translator (Program 
Synthesis) 
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If an AST node is semantically 
correct, it can be translated. 
Translation involves capturing the 
run- time “meaning” of a construct. 

For example, an AST for a while loop 
contains two subtrees, one for the 
loop’s control expression, and the 
other for the loop’s body. Nothing 
in the AST shows that a while loop 
loops! This “meaning” is captured 
when a while loop’s AST is 
translated. In the IR, the notion of 
testing the value of the loop control 
expression, 



and conditionally executing the 
loop body becomes explicit. 
The translator is dictated by the 
semantics of the source 
language. Little of the nature of 
the target machine need be 
made evident. Detailed 
information on the nature of 
the target machine (operations 
available, addressing, register 
characteristics, etc.) is reserved 
for the code generation phase. 
In simple non- optimizing 
compilers (like our class 
project), the translator 
generates target code directly, 
without using an IR. 
More elaborate compilers may 
first generate a high- level IR 
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(that is source language 
oriented) and then 
subsequently translate it into a 
low- level IR (that is target 
machine oriented). This 
approach allows a cleaner 
separation of source and target 
dependencies. 
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Optimizer 
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The IR code generated by the 
translator is analyzed and 
transformed into functionally 
equivalent but improved IR code 
by the optimizer. 
The term optimization is 
misleading: we don’t always 
produce the best possible 
translation of a program, even 
after optimization by the best of 
compilers. 
Why? 
Some optimizations are 
impossible to do in all 
circumstances because they 
involve an undecidable problem. 
Eliminating unreachable (“dead”) 
code is, in general, impossible. 



Other optimizations are too 
expensive to do in all cases. 
These involve NP- complete 
problems, believed to be 
inherently exponential. 
Assigning registers to variables 
is an example of an NP- 
complete problem. 
Optimization can be complex; it 
may involve numerous 
subphases, which may need to 
be applied more than once. 
Optimizations may be turned off 
to speed translation. 
Nonetheless, a well designed 
optimizer can significantly speed 
program execution by 
simplifying, moving or 
eliminating unneeded 
computations. 
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Code Generator 
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IR code produced by the 
translator is mapped into target 
machine code by the code 
generator. This phase uses 
detailed information about the 
target machine and includes 
machine- specific optimizations 
like register allocation and code 
scheduling. 
Code generators can be quite 
complex since good target 
code requires consideration of 
many special cases. 
Automatic generation of code 
generators is possible. The 
basic approach is to match a 
low- level IR to target 
instruction templates, choosing 



instructions which best match 
each IR instruction. 
A well- known compiler using 
automatic code generation 
techniques is the GNU C compiler. 
GCC is a heavily optimizing 
compiler with machine 
description files for over ten 
popular computer architectures, 
and at least two language front 
ends (C and C+ + ). 
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Symbol Tables 
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A symbol table allows information to 
be associated with identifiers and 
shared among compiler phases. 
Each time an identifier is used, a 
symbol table provides access to the 
information collected about the 
identifier when its declaration was 
processed. 



Example 
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Our source language will be 
CSX, a blend of C, C+ +  and 
Java. 
Our target language will be the 
Java JVM, using the Jasmin 
assembler. 

•  A simple source line is 
a = bb+abs(c-7);

this is a sequence of ASCII characters 
in a text file. 

•  The scanner groups characters into 
tokens, the basic units of a program. 

a = bb+abs(c-7);
After scanning, we have the following 
token sequence: 
Ida  Asg  Idbb  Plus Idabs Lparen  Idc 

Minus IntLiteral7 Rparen Semi 



•  The parser groups these tokens into 
language constructs (expressions, 
statements, declarations, etc.) 
represented in tree form: 

Asg 

(What happened to the 
parentheses and the 
semicolon?) 

Ida Plus 

Idbb Call 
Idabs Minus 

Idc IntLiteral 

© 
CS 536  Spring 2015 20 



Idbb Call 
Idabs 

Idc 

•  The type checker resolves types and 
binds declarations within scopes: 

Asgint
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Ida Plusint

Minusint

int

IntLiteral7 

intloc

intloc int

intloc

method



•  Finally, JVM code is generated for each 
node in the tree (leaves first, then 
roots): 
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invokestatic 
abs(I)I

java/lang/Math/

iadd ; compute bb+abs(c-7)

iload 3 ; push local 3 (bb)
iload 2 ; push local 2 (c)
ldc 7 ; Push literal 7
isub ; compute c-7

istore 1 ; store result into
local 1(a)



Symbol Tables & Scoping 
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Programming languages use 
scopes to limit the range in which 
an identifier is active (and 
visible). 

Within a scope a name may be 
defined only once (though 
overloading may be allowed). 

A symbol table (or dictionary) is 
commonly used to collect all the 
definitions that appear within a 
scope. 

At the start of a scope, the symbol 
table is empty. At the end of a 
scope, all declarations within that 
scope are available within the 
symbol table. 



A language definition may or 
may not allow forward 
references to an identifier. 
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If forward references are allowed, you 
may use a name that is defined later in 
the scope (Java does this for field and 
method declarations within a class). 

If forward references are not allowed, 
an identifier is visible only after its 
declaration. C, C+ + and Java do this 
for variable declarations. 

In CSX only forward references  to 
methods are allowed. 



In terms of symbol tables, 
forward references require two 
passes over a scope.  
 
First all declarations are 
gathered. Next, all references are 
resolved using the complete set 
of declarations stored in the 
symbol table. 
 
If forward references are 
disallowed, one pass through a 
scope suffices, processing 
declarations and uses of 
identifiers together. 
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Block Structured Languages 

© 
CS 536  Spring 2015 40 

•  Introduced by Algol 60, includes C, 
C+ + , C#, CSX and Java. 

•  Identifiers may have a non- global 
scope. Declarations may be local to a 
class, subprogram or block. 

•  Scopes may nest, with declarations 
propagating to inner (contained) 
scopes. 

•  The lexically nearest declaration of an 
identifier is bound to uses of that 
identifier. 



Example (drawn from C): 

int x,z; 
void A()
float x,y; 
print(x,y,z);

}
void B() {
print (x,y,z)

}

{

int 
float

float
 
 

int 
undeclared

int
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Block Structure Concepts 
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•  Nested Visibility 

No access to identifiers outside 
their scope. 

•  Nearest Declaration Applies 

Using static nesting of scopes. 
•  Automatic Allocation and Deallocation 

of Locals 

Lifetime of data objects is 
bound to the scope of the 
Identifiers that denote them. 



Is Case Significant? 
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In some languages (C, C+ + , 
Java and many others) case is 
significant in identifiers. This 
means aa and AA are different 
symbols that may have entirely 
different definitions. 
In other languages (Pascal, Ada, 
Scheme, CSX) case is not 
significant. In such languages 
aa and AA are two alternative 
spellings of the same identifier. 
Data structures commonly used 
to implement symbol tables 
usually treat different cases as 
different symbols. This is fine 
when case is significant in a 
language.  



When case is insignificant, 
you probably will 
need to strip case before 
entering or looking up 
identifiers. 
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This just means that identifiers are 
converted to a uniform case before 
they are entered or looked up. Thus 
if we choose to use lower case 
uniformly, the identifiers aaa, AAA, 
and AaA are all converted to aaa for 
purposes of insertion or lookup.

BUT, inside the symbol table the 
identifier is stored in the form it 
was declared so that programmers 
see the form of identifier they 
expect in listings, error messages, 
etc. 



How are Symbol Tables 
Implemented? 
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There are a number of data 
structures that can reasonably 
be used to implement a symbol 
table: 
•  An Ordered List 

Symbols are stored in a linked list, 
sorted by the symbol’s name. This 
is simple, but may be a bit too slow 
if many identifiers appear in a 
scope. 

•  A Binary Search Tree 
Lookup is much faster than in 
linked lists, but rebalancing may be 
needed. (Entering identifiers in 
sorted order turns a search tree 
into a linked list.) 

•  Hash Tables 
The most popular choice. 



Implementing Block- 
Structured Symbol Tables 
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To implement a block 
structured symbol table we 
need to be able to efficiently 
open and close individual 
scopes, and limit insertion to 
the innermost current scope. 
This can be done using one 
symbol table structure if we tag 
individual entries with a “scope 
number.” 
It is far easier (but more 
wasteful of space) to allocate 
one symbol table for each 
scope. Open scopes are 
stacked, pushing and popping 
tables as scopes are opened 
and closed. 



Be careful though—many 
preprogrammed stack 
implementations don’t allow 
you to “peek” at entries below 
the stack top. This is necessary 
to lookup an identifier in all 
open scopes. 
If a suitable stack 
implementation (with a peek 
operation) isn’t available, a 
linked list of symbol tables will 
suffice. 
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Scanning 
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A scanner transforms a character 
stream into a token stream. 
A scanner is sometimes called a 
lexical analyzer or lexer. 
Scanners use a formal notation 
(regular expressions) to specify 
the precise structure of tokens. 
But why bother? Aren’t tokens 
very simple in structure? 
Token structure can be more 
detailed and subtle than one 
might expect. Consider simple 
quoted strings in C, C+ +  or Java. 
The body of a string can be any 
sequence of characters except a 
quote character (which must be 
escaped). But is this simple 
definition really correct? 



Can a newline character appear in 
a string? In C it cannot, unless it is 
escaped with a backslash. 
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C, C+ +  and Java allow escaped 
newlines in strings, Pascal forbids 
them entirely. Ada forbids all 
unprintable characters. 
Are null strings (zero- length) 
allowed? In C, C+ + , Java and Ada 
they are, but Pascal forbids them. 
(In Pascal a string is a packed 
array of characters, and zero 
length arrays are disallowed.) 
A precise definition of tokens can 
ensure that lexical rules are 
clearly stated and properly 
enforced. 



Regular Expressions 
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Regular expressions specify 
simple (possibly infinite) sets of 
strings. Regular expressions 
routinely specify the tokens 
used in programming 
languages. 
Regular expressions can drive a 
scanner generator. 
Regular expressions are widely 
used in computer utilities: 
• The Unix utility grep uses 

regular expressions to define 
search patterns in files. 

• Unix shells allow regular 
expressions in file lists for a 
command.



•  Most editors provide a “context 
search” command that specifies 
desired matches using regular 
expressions. 

•The Windows Find utility allows 
some regular expressions. 
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Regular Sets 
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The sets of strings defined by 
regular expressions are called 
regular sets. 
When scanning, a token class will 
be a regular set, whose structure 
is defined by a regular 
expression. 
Particular instances of a token 
class are sometimes called 
lexemes, though we will simply 
call a string in a token class an 
instance of that token. Thus we 
call the string abc an identifier if 
it matches the regular expression 
that defines valid identifier 
tokens. 
Regular expressions use a finite 
character set, or vocabulary 
(denoted Σ). 



This vocabulary is normally the 
character set used by a computer. 
Today, the ASCII character set, 
which contains a total of 128 
characters, is very widely used. 
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Java uses the Unicode character 
set which includes all the ASCII 
characters as well as a wide 
variety of other characters. 
An empty or null string is allowed 
(denoted λ, “lambda”). Lambda 
represents an empty buffer in 
which no characters have yet been 
matched. It also represents 
optional parts of tokens. An 
integer literal may begin with a 
plus or minus, or it may begin 
with λ if it is unsigned.



Catenation 
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Strings are built from characters 
in the character set Σ via 
catenation. 
As characters are catenated to a 
string, it grows in length. The 
string do is built by first 
catenating d to λ, and then 
catenating o to the string d. The 
null string, when catenated with 
any string s, yields s. That is, s λ ≡ 
λ s ≡ s. Catenating λ to a string is 
like adding 0 to an integer— 
nothing changes.
Catenation is extended to sets of 
strings: 
Let P and Q be sets of strings. 
(The symbol ∈ represents set 
membership.) If s1 ∈ P and s2 ∈ Q 
then string s1s2 ∈ (P Q). 



Alternation 
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Small finite sets are conveniently 
represented by listing their 
elements. Parentheses delimit 
expressions, and | , the alternation 
operator, separates alternatives. 
For example, D, the set of the ten 
single digits, is defined as 
D = (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9). 
The characters (, ), ' , ∗, + , and | 
are meta- characters (punctuation 
and regular expression 
operators). 
Meta- characters must be quoted 
when used as ordinary characters 
to avoid ambiguity. 



For example the expression 
( '(' | ')' | ; | , )
defines four single character 
tokens (left parenthesis, right 
parenthesis, semicolon and 
comma). The parentheses are 
quoted when they represent 
individual tokens and are not 
used as delimiters in a larger 
regular expression. 
Alternation is extended to sets of 
strings: 
Let P and Q be sets of strings. 
Then string s ∈ (P | Q) if and only 
if s ∈ P or s ∈ Q. 
For example, if LC is the set of 
lower- case letters and UC is the 
set of upper- case letters, then 
(LC | UC) is the set of all letters (in 
either case). 
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Kleene Closure 
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A useful operation is Kleene closure 
represented by a postfix ∗ operator. 

Let P be a set of strings. Then P* 

represents all strings formed by 
the catenation of zero or more 
selections (possibly repeated) 
from P. 
Zero selections are denoted by λ.

For example, LC* is the set of all 
words composed of lower- case 
letters, of any length (including 
the zero length word, λ).

Precisely stated, a string s ∈ P*  if 
and only if s can be broken into 
zero or more pieces: s =  s1 s2 ... 
sn so that each si ∈ P (n ≥ 0, 1 ≤ i ≤
n). 
We allow n = 0, so λ is always in P. 



Definition of Regular 
Expressions 
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Using catenations, alternation 
and Kleene closure, we can 
define regular expressions as 
follows: 
•  ∅ is a regular expression denoting 

the empty set (the set containing 
no strings). ∅ is rarely used, but is 
included for completeness. 

•  λ is a regular expression denoting 
the set that contains only the 
empty string. This set is not the 
same as the empty set, because it 
contains one element. 

•  A string s is a regular expression 
denoting a set containing the 
single string s. 



•  If A and B are regular expressions, 
then A | B, A B, and A* are also 
regular expressions, denoting the 
alternation, catenation, and Kleene 
closure of the corresponding 
regular sets. 

 
Each regular expression 
denotes a set of strings (a 
regular set). Any finite set of 
strings can be represented by a 
regular expression of the form 
(s1 | s2 | … | sk ). Thus the 
reserved words of ANSI C can 
be defined as 
(auto | break | case | …). 
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The following additional 
operations useful. They are not 
strictly necessary, because their 
effect can be obtained using 
alternation, catenation, Kleene 
closure: 

•  P+  denotes all strings consisting of 
one or more strings in P catenated 
together: 
P* =   (P+ | λ) and P+  =  P P*. 
For example, ( 0 | 1 )+  is the set of 
all strings containing one or more 
bits. 

•  If A is a set of characters, Not(A) 
denotes (Σ − A); that is, all 
characters in Σ not included in A. 
Since Not(A) can never be larger 
than Σ and Σ is finite, Not(A) must 
also be finite, and is therefore 
regular. Not(A) does not contain λ 
since λ is not a character (it is a 
zero- length string). 
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For example, Not(Eol) is the set of 
all characters excluding Eol (the 
end of line character, '\n' in Java or 
C). 

•  It is possible to extend Not to 
strings, rather than just Σ. That is, 
if S is a set of strings, we define S 
to be 
(Σ* − S); the set of all strings except 
those in S. Though S is usually 
infinite, it is also regular if S is. 

•  If k is a constant, the set Ak 

represents all strings formed by 
catenating k (possibly different) 
strings from A. 
That is, Ak =  (A A A …) (k copies). 
Thus ( 0 | 1 )32 is the set of all bit 
strings exactly 32 bits long. 
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Examples 
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Let D be the ten single digits 
and let L be the set of all 52 
letters. Then 
•  A Java or C+ + single- line comment 

that begins with // and ends with 
Eol can be defined as: 

Comment  =  //  Not(Eol)* Eol 
 
•  A fixed decimal literal (e.g., 
12.345) can be defined as: 

Lit = D+. D+ 

• An optionally signed integer 
literal can be defined as: 

IntLiteral = ( '+' | − | λ ) D+ 

(Why the quotes on the plus?) 



Finite Automata and Scanners 
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A finite automaton (FA) can be 
used to recognize the tokens 
specified by a regular 
expression. FAs are simple, 
idealized computers that 
recognize strings belonging to 
regular sets. An FA consists of: 
•  A finite set of states 
•  A set of transitions (or moves) from 

one state to another, labeled with 
characters in Σ

•  A special state called the start state 
•  A subset of the states called the 

accepting, or final, states 



•  A comment delimited by ## 
markers, which allows single #’s 
within the comment body: 

Comment2  = 
## ((# | λ)  Not(#) )* ## 

All finite sets and many infinite sets 
are regular. But not all infinite sets 
are regular. Consider the set of 
balanced brackets of the form 
[ [ [. ] ] ]. 

This set is defined formally as 
{ [m ]m | m ≥ 1 }. 
This set is known not to be regular. 
Any regular expression that tries to 
define it either does not get all 
balanced nestings or it includes 
extra, unwanted strings. 
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These four components of a 
finite automaton are often 
represented graphically: 

is a stateeof 

is a transition  

is the start state 
 

is an accepting state 
 
 
Finite automata (the plural of 
automaton is automata) are 
represented graphically using 
transition diagrams. We start at 
the start state. If the next input 
character matches the label on 
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a transition from the current 
state, we go to the state it 
points to. If no move is 
possible, we stop. If we finish in 
an accepting state, the 
sequence of characters read 
forms a valid token; otherwise, 
we have not seen a valid token. 

In this diagram, the valid 
tokens are the strings 
described by the regular 
expression (a b (c)+ )+. 

a 
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a  c b 

c 



Deterministic Finite Automata 
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As an abbreviation, a transition may 
be labeled with more than one 
character (for example, Not(c)). The 
transition may be taken if the 
current input character matches any 
of the characters labeling the 
transition. 

If an FA always has a unique 
transition (for a given state and 
character), the FA is deterministic 
(that is, a deterministic FA, or DFA). 
Deterministic finite automata are 
easy to program and often drive a 
scanner. 
If there are transitions to more than 
one state for some character, then 
the FA is nondeterministic (that is, 
an NFA). 



A DFA is conveniently represented 
in a computer by a transition 
table. A transition table, T, is a 
two dimensional array indexed by 
a DFA state and a vocabulary 
symbol. 
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Table entries are either a DFA state 
or an error flag (often represented 
as a blank table entry). If we are in 
state s, and read character c, then 
T[s,c] will be the next state we visit, 
or T[s,c] will contain an error marker 
indicating that c cannot extend the 
current token. For example, the 
regular expression 

//  Not(Eol)* Eol 

which defines a Java or C+ + 
single- line comment, might be 
translated into 



Not(Eol) 
 
The corresponding transition 
table is: 

A complete transition table 
contains one column for each 
character. To save space, table 
compression may be used. Only 
non- error entries are explicitly 
represented in the table, using 
hashing, indirection or linked 
structures. 

Eol 
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/ / 
1 2 3 4

State Character 
/ Eol a b   

1 2 
2 3 
3 3 4 3 3 3 
4 



All regular expressions can be 
translated into DFAs that accept 
(as valid tokens) the strings 
defined by the regular 
expressions. This translation can 
be done manually by a 
programmer or automatically 
using a scanner generator. 
A DFA can be coded in: 
•  Table- driven form 

•  Explicit control form 

In the table- driven form, the 
transition table that defines a 
DFA’s actions is explicitly 
represented in a run- time table 
that is “interpreted” by a driver 
program. 
In the direct control form, the 
transition table that defines a DFA’s 
actions appears implicitly as the 
control logic of the program. 
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For example, suppose 
CurrentChar is the current input 
character. End of file is 
represented by a special character 
value, eof. Using the DFA for the 
Java comments shown earlier, a 
table- driven scanner is: 
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State 
while
if

= StartState
(true){

(CurrentChar 
break

== eof)

NextState =
T[State][CurrentChar]

if(NextState == error) 
break

State = NextState 
read(CurrentChar)

}
if (State in AcceptingStates)

// Process valid token
// Signal a lexical errorelse



This form of scanner is produced 
by a scanner generator; it is 
definition- independent. The 
scanner is a driver that can scan 
any token if T contains the 
appropriate transition table. 
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Here is an explicit- control scanner 
for the same comment definition: 
if (CurrentChar == '/')

{ read(CurrentChar)
if (CurrentChar == '/') 

repeat
read(CurrentChar) 

until (CurrentChar in
{eol, eof})

else //Signal lexical error 
else // Signal lexical error

if (CurrentChar == eol) 
token// Process valid 

else //Signal lexical error



The token being scanned is 
“hardwired” into the logic of the 
code. The scanner is usually easy 
to read and often is more 
efficient, but is specific to a single 
token definition. 
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