
CS 536

©
CS 536 Spring 2015 1

Introduction to
Programming Languages

and Compilers
Charles N. Fischer

Lecture 2

Reading Assignment

©
CS 536 Spring 2015 21

Read Chapter 3 of
Craf t ing a Compi ler.

The Structure of a Compiler

©
CS 536 Spring 2015 3

A compiler performs two major
tasks:

•  Analysis of the source program
being compiled

•  Synthesis of a target program

Almost all modern compilers are
syntax- directed: The compilation
process is driven by the syntactic
structure of the source program.
A parser builds syntactic structure
out of tokens, the elementary
symbols of programming language
syntax. Recognition of syntactic
structure is a major part of the
analysis task.

Semantic analysis examines the
meaning (semantics) of the
program. Semantic analysis
plays a dual role.

©
CS 536 Spring 2015 4

It finishes the analysis task by
performing a variety of
correctness checks (for
example, enforcing type and
scope rules). Semantic analysis
also begins the synthesis
phase.

The synthesis phase may
translate source programs into
some intermediate
representation (IR) or it may
directly generate target code.

If an IR is generated, it then
serves as input to a code
generator component that
produces the desired machine-
language program. The IR may
optionally be transformed by an
optimizer so that a more
efficient program may be
generated.

©
CS 536 Spring 2015 5

Type Checker

Optimizer

Code
Generator

Scanner

Symbol Tables

Parser

Source
Program

(Character
Stream)

Tokens

Decorated
AST

Abstract
Syntax
Tree

(AST)

©
CS 536 Spring 2015 20

Translator

Intermediate
Representation

(IR)

IR

Target Machine
Code

The Structure of a Syntax-Directed Compiler

Scanner

©
CS 536 Spring 2015 7

The scanner reads the source program,
character by character. It groups
individual characters into tokens
(identifiers, integers, reserved words,
delimiters, and so on). When
necessary, the actual character string
comprising the token is also passed
along for use by the semantic phases.
The scanner:

•  Puts the program into a compact
and uniform format (a stream of
tokens).

•  Eliminates unneeded information
(such as comments).

•  Sometimes enters preliminary
information into symbol tables (for

example, to register the presence
of a particular label or identifier).

•  Optionally formats and lists the
source program

Building tokens is driven by
token descriptions defined
using regular expression
notation.
Regular expressions are a
formal notation able to
describe the tokens used in
modern programming
languages. Moreover, they can
drive the automatic generation
of working scanners given only
a specification of the tokens.
Scanner generators (like Lex,
Flex and JLex) are valuable
compiler- building tools.

©
CS 536 Spring 2015 8

Parser

©
CS 536 Spring 2015 9

Given a syntax specification (as
a context- free grammar, CFG),
the parser reads tokens and
groups them into language
structures.
Parsers are typically created
from a CFG using a parser
generator (like Yacc, Bison or
Java CUP).
The parser verifies correct
syntax and may issue a syntax
error message.
As syntactic structure is
recognized, the parser usually
builds an abstract syntax tree
(AST), a concise representation
of program structure, which
guides semantic processing.

Type Checker
(Semantic Analysis)

©
CS 536 Spring 2015 10

The type checker checks the static
semantics of each AST node. It
verifies that the construct is legal
and meaningful (that all
identifiers involved are declared,
that types are correct, and so on).
If the construct is semantically
correct, the type checker
“decorates” the AST node, adding
type or symbol table information
to it. If a semantic error is
discovered, a suitable error
message is issued.
Type checking is purely
dependent on the semantic rules
of the source language. It is
independent of the compiler’s
target machine.

Translator (Program
Synthesis)

©
CS 536 Spring 2015 11

If an AST node is semantically
correct, it can be translated.
Translation involves capturing the
run- time “meaning” of a construct.

For example, an AST for a while loop
contains two subtrees, one for the
loop’s control expression, and the
other for the loop’s body. Nothing
in the AST shows that a while loop
loops! This “meaning” is captured
when a while loop’s AST is
translated. In the IR, the notion of
testing the value of the loop control
expression,

and conditionally executing the
loop body becomes explicit.
The translator is dictated by the
semantics of the source
language. Little of the nature of
the target machine need be
made evident. Detailed
information on the nature of
the target machine (operations
available, addressing, register
characteristics, etc.) is reserved
for the code generation phase.
In simple non- optimizing
compilers (like our class
project), the translator
generates target code directly,
without using an IR.
More elaborate compilers may
first generate a high- level IR

©
CS 536 Spring 2015 12

(that is source language
oriented) and then
subsequently translate it into a
low- level IR (that is target
machine oriented). This
approach allows a cleaner
separation of source and target
dependencies.

©
CS 536 Spring 2015 13

Optimizer

©
CS 536 Spring 2015 14

The IR code generated by the
translator is analyzed and
transformed into functionally
equivalent but improved IR code
by the optimizer.
The term optimization is
misleading: we don’t always
produce the best possible
translation of a program, even
after optimization by the best of
compilers.
Why?
Some optimizations are
impossible to do in all
circumstances because they
involve an undecidable problem.
Eliminating unreachable (“dead”)
code is, in general, impossible.

Other optimizations are too
expensive to do in all cases.
These involve NP- complete
problems, believed to be
inherently exponential.
Assigning registers to variables
is an example of an NP-
complete problem.
Optimization can be complex; it
may involve numerous
subphases, which may need to
be applied more than once.
Optimizations may be turned off
to speed translation.
Nonetheless, a well designed
optimizer can significantly speed
program execution by
simplifying, moving or
eliminating unneeded
computations.

©
CS 536 Spring 2015 15

Code Generator

©
CS 536 Spring 2015 30

IR code produced by the
translator is mapped into target
machine code by the code
generator. This phase uses
detailed information about the
target machine and includes
machine- specific optimizations
like register allocation and code
scheduling.
Code generators can be quite
complex since good target
code requires consideration of
many special cases.
Automatic generation of code
generators is possible. The
basic approach is to match a
low- level IR to target
instruction templates, choosing

instructions which best match
each IR instruction.
A well- known compiler using
automatic code generation
techniques is the GNU C compiler.
GCC is a heavily optimizing
compiler with machine
description files for over ten
popular computer architectures,
and at least two language front
ends (C and C+ +).

©
CS 536 Spring 2015 17

Symbol Tables

©
CS 536 Spring 2015 18

A symbol table allows information to
be associated with identifiers and
shared among compiler phases.
Each time an identifier is used, a
symbol table provides access to the
information collected about the
identifier when its declaration was
processed.

Example

©
CS 536 Spring 2015 19

Our source language will be
CSX, a blend of C, C+ + and
Java.
Our target language will be the
Java JVM, using the Jasmin
assembler.

•  A simple source line is
a = bb+abs(c-7);

this is a sequence of ASCII characters
in a text file.

•  The scanner groups characters into
tokens, the basic units of a program.

a = bb+abs(c-7);
After scanning, we have the following
token sequence:
Ida Asg Idbb Plus Idabs Lparen Idc

Minus IntLiteral7 Rparen Semi

•  The parser groups these tokens into
language constructs (expressions,
statements, declarations, etc.)
represented in tree form:

Asg

(What happened to the
parentheses and the
semicolon?)

Ida Plus

Idbb Call
Idabs Minus

Idc IntLiteral

©
CS 536 Spring 2015 20

Idbb Call
Idabs

Idc

•  The type checker resolves types and
binds declarations within scopes:

Asgint

©
CS 536 Spring 2015 21

Ida Plusint

Minusint

int

IntLiteral7

intloc

intloc int

intloc

method

•  Finally, JVM code is generated for each
node in the tree (leaves first, then
roots):

©
CS 536 Spring 2015 22

invokestatic
abs(I)I

java/lang/Math/

iadd ; compute bb+abs(c-7)

iload 3 ; push local 3 (bb)
iload 2 ; push local 2 (c)
ldc 7 ; Push literal 7
isub ; compute c-7

istore 1 ; store result into
local 1(a)

Symbol Tables & Scoping

©
CS 536 Spring 2015 23

Programming languages use
scopes to limit the range in which
an identifier is active (and
visible).

Within a scope a name may be
defined only once (though
overloading may be allowed).

A symbol table (or dictionary) is
commonly used to collect all the
definitions that appear within a
scope.

At the start of a scope, the symbol
table is empty. At the end of a
scope, all declarations within that
scope are available within the
symbol table.

A language definition may or
may not allow forward
references to an identifier.

©
CS 536 Spring 2015 24

If forward references are allowed, you
may use a name that is defined later in
the scope (Java does this for field and
method declarations within a class).

If forward references are not allowed,
an identifier is visible only after its
declaration. C, C+ + and Java do this
for variable declarations.

In CSX only forward references to
methods are allowed.

In terms of symbol tables,
forward references require two
passes over a scope.

First all declarations are
gathered. Next, all references are
resolved using the complete set
of declarations stored in the
symbol table.

If forward references are
disallowed, one pass through a
scope suffices, processing
declarations and uses of
identifiers together.

©
CS 536 Spring 2015 25

Block Structured Languages

©
CS 536 Spring 2015 40

•  Introduced by Algol 60, includes C,
C+ + , C#, CSX and Java.

•  Identifiers may have a non- global
scope. Declarations may be local to a
class, subprogram or block.

•  Scopes may nest, with declarations
propagating to inner (contained)
scopes.

•  The lexically nearest declaration of an
identifier is bound to uses of that
identifier.

Example (drawn from C):

int x,z;
void A()
float x,y;
print(x,y,z);

}
void B() {
print (x,y,z)

}

{

int
float

float

int
undeclared

int

©
CS 536 Spring 2015 27

Block Structure Concepts

©
CS 536 Spring 2015 28

•  Nested Visibility

No access to identifiers outside
their scope.

•  Nearest Declaration Applies

Using static nesting of scopes.
•  Automatic Allocation and Deallocation

of Locals

Lifetime of data objects is
bound to the scope of the
Identifiers that denote them.

Is Case Significant?

©
CS 536 Spring 2015 29

In some languages (C, C+ + ,
Java and many others) case is
significant in identifiers. This
means aa and AA are different
symbols that may have entirely
different definitions.
In other languages (Pascal, Ada,
Scheme, CSX) case is not
significant. In such languages
aa and AA are two alternative
spellings of the same identifier.
Data structures commonly used
to implement symbol tables
usually treat different cases as
different symbols. This is fine
when case is significant in a
language.

When case is insignificant,
you probably will
need to strip case before
entering or looking up
identifiers.

©
CS 536 Spring 2015 30

This just means that identifiers are
converted to a uniform case before
they are entered or looked up. Thus
if we choose to use lower case
uniformly, the identifiers aaa, AAA,
and AaA are all converted to aaa for
purposes of insertion or lookup.

BUT, inside the symbol table the
identifier is stored in the form it
was declared so that programmers
see the form of identifier they
expect in listings, error messages,
etc.

How are Symbol Tables
Implemented?

©
CS 536 Spring 2015 31

There are a number of data
structures that can reasonably
be used to implement a symbol
table:
•  An Ordered List

Symbols are stored in a linked list,
sorted by the symbol’s name. This
is simple, but may be a bit too slow
if many identifiers appear in a
scope.

•  A Binary Search Tree
Lookup is much faster than in
linked lists, but rebalancing may be
needed. (Entering identifiers in
sorted order turns a search tree
into a linked list.)

•  Hash Tables
The most popular choice.

Implementing Block-
Structured Symbol Tables

©
CS 536 Spring 2015 32

To implement a block
structured symbol table we
need to be able to efficiently
open and close individual
scopes, and limit insertion to
the innermost current scope.
This can be done using one
symbol table structure if we tag
individual entries with a “scope
number.”
It is far easier (but more
wasteful of space) to allocate
one symbol table for each
scope. Open scopes are
stacked, pushing and popping
tables as scopes are opened
and closed.

Be careful though—many
preprogrammed stack
implementations don’t allow
you to “peek” at entries below
the stack top. This is necessary
to lookup an identifier in all
open scopes.
If a suitable stack
implementation (with a peek
operation) isn’t available, a
linked list of symbol tables will
suffice.

©
CS 536 Spring 2015 33

Scanning

©
CS 536 Spring 2015 49

A scanner transforms a character
stream into a token stream.
A scanner is sometimes called a
lexical analyzer or lexer.
Scanners use a formal notation
(regular expressions) to specify
the precise structure of tokens.
But why bother? Aren’t tokens
very simple in structure?
Token structure can be more
detailed and subtle than one
might expect. Consider simple
quoted strings in C, C+ + or Java.
The body of a string can be any
sequence of characters except a
quote character (which must be
escaped). But is this simple
definition really correct?

Can a newline character appear in
a string? In C it cannot, unless it is
escaped with a backslash.

©
CS 536 Spring 2015 50

C, C+ + and Java allow escaped
newlines in strings, Pascal forbids
them entirely. Ada forbids all
unprintable characters.
Are null strings (zero- length)
allowed? In C, C+ + , Java and Ada
they are, but Pascal forbids them.
(In Pascal a string is a packed
array of characters, and zero
length arrays are disallowed.)
A precise definition of tokens can
ensure that lexical rules are
clearly stated and properly
enforced.

Regular Expressions

©
CS 536 Spring 2015 51

Regular expressions specify
simple (possibly infinite) sets of
strings. Regular expressions
routinely specify the tokens
used in programming
languages.
Regular expressions can drive a
scanner generator.
Regular expressions are widely
used in computer utilities:
• The Unix utility grep uses

regular expressions to define
search patterns in files.

• Unix shells allow regular
expressions in file lists for a
command.

•  Most editors provide a “context
search” command that specifies
desired matches using regular
expressions.

•The Windows Find utility allows
some regular expressions.

©
CS 536 Spring 2015 52

Regular Sets

©
CS 536 Spring 2015 53

The sets of strings defined by
regular expressions are called
regular sets.
When scanning, a token class will
be a regular set, whose structure
is defined by a regular
expression.
Particular instances of a token
class are sometimes called
lexemes, though we will simply
call a string in a token class an
instance of that token. Thus we
call the string abc an identifier if
it matches the regular expression
that defines valid identifier
tokens.
Regular expressions use a finite
character set, or vocabulary
(denoted Σ).

This vocabulary is normally the
character set used by a computer.
Today, the ASCII character set,
which contains a total of 128
characters, is very widely used.

©
CS 536 Spring 2015 54

Java uses the Unicode character
set which includes all the ASCII
characters as well as a wide
variety of other characters.
An empty or null string is allowed
(denoted λ, “lambda”). Lambda
represents an empty buffer in
which no characters have yet been
matched. It also represents
optional parts of tokens. An
integer literal may begin with a
plus or minus, or it may begin
with λ if it is unsigned.

Catenation

©
CS 536 Spring 2015 55

Strings are built from characters
in the character set Σ via
catenation.
As characters are catenated to a
string, it grows in length. The
string do is built by first
catenating d to λ, and then
catenating o to the string d. The
null string, when catenated with
any string s, yields s. That is, s λ ≡
λ s ≡ s. Catenating λ to a string is
like adding 0 to an integer—
nothing changes.
Catenation is extended to sets of
strings:
Let P and Q be sets of strings.
(The symbol ∈ represents set
membership.) If s1 ∈ P and s2 ∈ Q
then string s1s2 ∈ (P Q).

Alternation

©
CS 536 Spring 2015 56

Small finite sets are conveniently
represented by listing their
elements. Parentheses delimit
expressions, and | , the alternation
operator, separates alternatives.
For example, D, the set of the ten
single digits, is defined as
D = (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9).
The characters (,), ' , ∗, + , and |
are meta- characters (punctuation
and regular expression
operators).
Meta- characters must be quoted
when used as ordinary characters
to avoid ambiguity.

For example the expression
('(' | ')' | ; | ,)
defines four single character
tokens (left parenthesis, right
parenthesis, semicolon and
comma). The parentheses are
quoted when they represent
individual tokens and are not
used as delimiters in a larger
regular expression.
Alternation is extended to sets of
strings:
Let P and Q be sets of strings.
Then string s ∈ (P | Q) if and only
if s ∈ P or s ∈ Q.
For example, if LC is the set of
lower- case letters and UC is the
set of upper- case letters, then
(LC | UC) is the set of all letters (in
either case).

©
CS 536 Spring 2015 57

Kleene Closure

©
CS 536 Spring 2015 58

A useful operation is Kleene closure
represented by a postfix ∗ operator.

Let P be a set of strings. Then P*

represents all strings formed by
the catenation of zero or more
selections (possibly repeated)
from P.
Zero selections are denoted by λ.

For example, LC* is the set of all
words composed of lower- case
letters, of any length (including
the zero length word, λ).

Precisely stated, a string s ∈ P* if
and only if s can be broken into
zero or more pieces: s = s1 s2 ...
sn so that each si ∈ P (n ≥ 0, 1 ≤ i ≤
n).
We allow n = 0, so λ is always in P.

Definition of Regular
Expressions

©
CS 536 Spring 2015 59

Using catenations, alternation
and Kleene closure, we can
define regular expressions as
follows:
•  ∅ is a regular expression denoting

the empty set (the set containing
no strings). ∅ is rarely used, but is
included for completeness.

•  λ is a regular expression denoting
the set that contains only the
empty string. This set is not the
same as the empty set, because it
contains one element.

•  A string s is a regular expression
denoting a set containing the
single string s.

•  If A and B are regular expressions,
then A | B, A B, and A* are also
regular expressions, denoting the
alternation, catenation, and Kleene
closure of the corresponding
regular sets.

Each regular expression
denotes a set of strings (a
regular set). Any finite set of
strings can be represented by a
regular expression of the form
(s1 | s2 | … | sk). Thus the
reserved words of ANSI C can
be defined as
(auto | break | case | …).

©
CS 536 Spring 2015 60

The following additional
operations useful. They are not
strictly necessary, because their
effect can be obtained using
alternation, catenation, Kleene
closure:

•  P+ denotes all strings consisting of
one or more strings in P catenated
together:
P* = (P+ | λ) and P+ = P P*.
For example, (0 | 1)+ is the set of
all strings containing one or more
bits.

•  If A is a set of characters, Not(A)
denotes (Σ − A); that is, all
characters in Σ not included in A.
Since Not(A) can never be larger
than Σ and Σ is finite, Not(A) must
also be finite, and is therefore
regular. Not(A) does not contain λ
since λ is not a character (it is a
zero- length string).

©
CS 536 Spring 2015 61

For example, Not(Eol) is the set of
all characters excluding Eol (the
end of line character, '\n' in Java or
C).

•  It is possible to extend Not to
strings, rather than just Σ. That is,
if S is a set of strings, we define S
to be
(Σ* − S); the set of all strings except
those in S. Though S is usually
infinite, it is also regular if S is.

•  If k is a constant, the set Ak

represents all strings formed by
catenating k (possibly different)
strings from A.
That is, Ak = (A A A …) (k copies).
Thus (0 | 1)32 is the set of all bit
strings exactly 32 bits long.

©
CS 536 Spring 2015 62

Examples

©
CS 536 Spring 2015 63

Let D be the ten single digits
and let L be the set of all 52
letters. Then
•  A Java or C+ + single- line comment

that begins with // and ends with
Eol can be defined as:

Comment = // Not(Eol)* Eol

•  A fixed decimal literal (e.g.,
12.345) can be defined as:

Lit = D+. D+

• An optionally signed integer
literal can be defined as:

IntLiteral = ('+' | − | λ) D+

(Why the quotes on the plus?)

Finite Automata and Scanners

©
CS 536 Spring 2015 65

A finite automaton (FA) can be
used to recognize the tokens
specified by a regular
expression. FAs are simple,
idealized computers that
recognize strings belonging to
regular sets. An FA consists of:
•  A finite set of states
•  A set of transitions (or moves) from

one state to another, labeled with
characters in Σ

•  A special state called the start state
•  A subset of the states called the

accepting, or final, states

•  A comment delimited by ##
markers, which allows single #’s
within the comment body:

Comment2 =
((# | λ) Not(#))* ##

All finite sets and many infinite sets
are regular. But not all infinite sets
are regular. Consider the set of
balanced brackets of the form
[[[.]]].

This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is known not to be regular.
Any regular expression that tries to
define it either does not get all
balanced nestings or it includes
extra, unwanted strings.

©
CS 536 Spring 2015 64

These four components of a
finite automaton are often
represented graphically:

is a stateeof

is a transition

is the start state

is an accepting state

Finite automata (the plural of
automaton is automata) are
represented graphically using
transition diagrams. We start at
the start state. If the next input
character matches the label on

©
CS 536 Spring 2015 66

a transition from the current
state, we go to the state it
points to. If no move is
possible, we stop. If we finish in
an accepting state, the
sequence of characters read
forms a valid token; otherwise,
we have not seen a valid token.

In this diagram, the valid
tokens are the strings
described by the regular
expression (a b (c)+)+.

a

©
CS 536 Spring 2015 67

a c b

c

Deterministic Finite Automata

©
CS 536 Spring 2015 68

As an abbreviation, a transition may
be labeled with more than one
character (for example, Not(c)). The
transition may be taken if the
current input character matches any
of the characters labeling the
transition.

If an FA always has a unique
transition (for a given state and
character), the FA is deterministic
(that is, a deterministic FA, or DFA).
Deterministic finite automata are
easy to program and often drive a
scanner.
If there are transitions to more than
one state for some character, then
the FA is nondeterministic (that is,
an NFA).

A DFA is conveniently represented
in a computer by a transition
table. A transition table, T, is a
two dimensional array indexed by
a DFA state and a vocabulary
symbol.

©
CS 536 Spring 2015 69

Table entries are either a DFA state
or an error flag (often represented
as a blank table entry). If we are in
state s, and read character c, then
T[s,c] will be the next state we visit,
or T[s,c] will contain an error marker
indicating that c cannot extend the
current token. For example, the
regular expression

// Not(Eol)* Eol

which defines a Java or C+ +
single- line comment, might be
translated into

Not(Eol)

The corresponding transition
table is:

A complete transition table
contains one column for each
character. To save space, table
compression may be used. Only
non- error entries are explicitly
represented in the table, using
hashing, indirection or linked
structures.

Eol

©
CS 536 Spring 2015 70

/ /
1 2 3 4

State Character
/ Eol a b

1 2
2 3
3 3 4 3 3 3
4

All regular expressions can be
translated into DFAs that accept
(as valid tokens) the strings
defined by the regular
expressions. This translation can
be done manually by a
programmer or automatically
using a scanner generator.
A DFA can be coded in:
•  Table- driven form

•  Explicit control form

In the table- driven form, the
transition table that defines a
DFA’s actions is explicitly
represented in a run- time table
that is “interpreted” by a driver
program.
In the direct control form, the
transition table that defines a DFA’s
actions appears implicitly as the
control logic of the program.

©
CS 536 Spring 2015 71

For example, suppose
CurrentChar is the current input
character. End of file is
represented by a special character
value, eof. Using the DFA for the
Java comments shown earlier, a
table- driven scanner is:

©
CS 536 Spring 2015 72

State
while
if

= StartState
(true){

(CurrentChar
break

== eof)

NextState =
T[State][CurrentChar]

if(NextState == error)
break

State = NextState
read(CurrentChar)

}
if (State in AcceptingStates)

// Process valid token
// Signal a lexical errorelse

This form of scanner is produced
by a scanner generator; it is
definition- independent. The
scanner is a driver that can scan
any token if T contains the
appropriate transition table.

©
CS 536 Spring 2015 73

Here is an explicit- control scanner
for the same comment definition:
if (CurrentChar == '/')

{ read(CurrentChar)
if (CurrentChar == '/')

repeat
read(CurrentChar)

until (CurrentChar in
{eol, eof})

else //Signal lexical error
else // Signal lexical error

if (CurrentChar == eol)
token// Process valid

else //Signal lexical error

The token being scanned is
“hardwired” into the logic of the
code. The scanner is usually easy
to read and often is more
efficient, but is specific to a single
token definition.

©
CS 536 Spring 2015 74

