
CS 536

©
CS 536 Spring 2015 1

Introduction to
Programming Languages

and Compilers
Charles N. Fischer

Lecture 3

Scanning

©
CS 536 Spring 2015 49

A scanner transforms a character
stream into a token stream.
A scanner is sometimes called a
lexical analyzer or lexer.
Scanners use a formal notation
(regular expressions) to specify
the precise structure of tokens.
But why bother? Aren’t tokens
very simple in structure?
Token structure can be more
detailed and subtle than one
might expect. Consider simple
quoted strings in C, C+ + or Java.
The body of a string can be any
sequence of characters except a
quote character (which must be
escaped). But is this simple
definition really correct?

Can a newline character appear in
a string? In C it cannot, unless it is
escaped with a backslash.

©
CS 536 Spring 2015 50

C, C+ + and Java allow escaped
newlines in strings, Pascal forbids
them entirely. Ada forbids all
unprintable characters.
Are null strings (zero- length)
allowed? In C, C+ + , Java and Ada
they are, but Pascal forbids them.
(In Pascal a string is a packed
array of characters, and zero
length arrays are disallowed.)
A precise definition of tokens can
ensure that lexical rules are
clearly stated and properly
enforced.

Regular Expressions

©
CS 536 Spring 2015 51

Regular expressions specify
simple (possibly infinite) sets of
strings. Regular expressions
routinely specify the tokens
used in programming
languages.
Regular expressions can drive a
scanner generator.
Regular expressions are widely
used in computer utilities:
• The Unix utility grep uses

regular expressions to define
search patterns in files.

• Unix shells allow regular
expressions in file lists for a
command.

•  Most editors provide a “context
search” command that specifies
desired matches using regular
expressions.

•The Windows Find utility allows
some regular expressions.

©
CS 536 Spring 2015 52

Regular Sets

©
CS 536 Spring 2015 53

The sets of strings defined by
regular expressions are called
regular sets.
When scanning, a token class will
be a regular set, whose structure
is defined by a regular
expression.
Particular instances of a token
class are sometimes called
lexemes, though we will simply
call a string in a token class an
instance of that token. Thus we
call the string abc an identifier if
it matches the regular expression
that defines valid identifier
tokens.
Regular expressions use a finite
character set, or vocabulary
(denoted Σ).

This vocabulary is normally the
character set used by a computer.
Today, the ASCII character set,
which contains a total of 128
characters, is very widely used.

©
CS 536 Spring 2015 54

Java uses the Unicode character
set which includes all the ASCII
characters as well as a wide
variety of other characters.
An empty or null string is allowed
(denoted λ, “lambda”). Lambda
represents an empty buffer in
which no characters have yet been
matched. It also represents
optional parts of tokens. An
integer literal may begin with a
plus or minus, or it may begin
with λ if it is unsigned.

Catenation

©
CS 536 Spring 2015 55

Strings are built from characters
in the character set Σ via
catenation.
As characters are catenated to a
string, it grows in length. The
string do is built by first
catenating d to λ, and then
catenating o to the string d. The
null string, when catenated with
any string s, yields s. That is, s λ ≡
λ s ≡ s. Catenating λ to a string is
like adding 0 to an integer—
nothing changes.
Catenation is extended to sets of
strings:
Let P and Q be sets of strings.
(The symbol ∈ represents set
membership.) If s1 ∈ P and s2 ∈ Q
then string s1s2 ∈ (P Q).

Alternation

©
CS 536 Spring 2015 56

Small finite sets are conveniently
represented by listing their
elements. Parentheses delimit
expressions, and | , the alternation
operator, separates alternatives.
For example, D, the set of the ten
single digits, is defined as
D = (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9).
The characters (,), ' , ∗, + , and |
are meta- characters (punctuation
and regular expression
operators).
Meta- characters must be quoted
when used as ordinary characters
to avoid ambiguity.

For example the expression
('(' | ')' | ; | ,)
defines four single character
tokens (left parenthesis, right
parenthesis, semicolon and
comma). The parentheses are
quoted when they represent
individual tokens and are not
used as delimiters in a larger
regular expression.
Alternation is extended to sets of
strings:
Let P and Q be sets of strings.
Then string s ∈ (P | Q) if and only
if s ∈ P or s ∈ Q.
For example, if LC is the set of
lower- case letters and UC is the
set of upper- case letters, then
(LC | UC) is the set of all letters (in
either case).

©
CS 536 Spring 2015 57

Kleene Closure

©
CS 536 Spring 2015 58

A useful operation is Kleene closure
represented by a postfix ∗ operator.

Let P be a set of strings. Then P*

represents all strings formed by
the catenation of zero or more
selections (possibly repeated)
from P.
Zero selections are denoted by λ.

For example, LC* is the set of all
words composed of lower- case
letters, of any length (including
the zero length word, λ).

Precisely stated, a string s ∈ P* if
and only if s can be broken into
zero or more pieces: s = s1 s2 ...
sn so that each si ∈ P (n ≥ 0, 1 ≤ i ≤
n).
We allow n = 0, so λ is always in P.

Definition of Regular
Expressions

©
CS 536 Spring 2015 59

Using catenation, alternation
and Kleene closure, we can
define regular expressions as
follows:
•  ∅ is a regular expression denoting

the empty set (the set containing
no strings). ∅ is rarely used, but is
included for completeness.

•  λ is a regular expression denoting
the set that contains only the
empty string. This set is not the
same as the empty set, because it
contains one element.

•  A string s is a regular expression
denoting a set containing the
single string s.

•  If A and B are regular expressions,
then A | B, A B, and A* are also
regular expressions, denoting the
alternation, catenation, and Kleene
closure of the corresponding
regular sets.

Each regular expression
denotes a set of strings (a
regular set). Any finite set of
strings can be represented by a
regular expression of the form
(s1 | s2 | … | sk). Thus the
reserved words of ANSI C can
be defined as
(auto | break | case | …).

©
CS 536 Spring 2015 60

The following additional
operations useful. They are not
strictly necessary, because their
effect can be obtained using
alternation, catenation, Kleene
closure:

•  P+ denotes all strings consisting of
one or more strings in P catenated
together:
P* = (P+ | λ) and P+ = P P*.
For example, (0 | 1)+ is the set of
all strings containing one or more
bits.

•  If A is a set of characters, Not(A)
denotes (Σ − A); that is, all
characters in Σ not included in A.
Since Not(A) can never be larger
than Σ and Σ is finite, Not(A) must
also be finite, and is therefore
regular. Not(A) does not contain λ
since λ is not a character (it is a
zero- length string).

©
CS 536 Spring 2015 61

For example, Not(Eol) is the set of
all characters excluding Eol (the
end of line character, '\n' in Java or
C).

•  It is possible to extend Not to
strings, rather than just Σ. That is,
if S is a set of strings, we define S
to be
(Σ* − S); the set of all strings except
those in S. Though S is usually
infinite, it is also regular if S is.

•  If k is a constant, the set Ak

represents all strings formed by
catenating k (possibly different)
strings from A.
That is, Ak = (A A A …) (k copies).
Thus (0 | 1)32 is the set of all bit
strings exactly 32 bits long.

©
CS 536 Spring 2015 62

Examples

©
CS 536 Spring 2015 63

Let D be the ten single digits
and let L be the set of all 52
letters. Then
•  A Java or C+ + single- line comment

that begins with // and ends with
Eol can be defined as:

Comment = // Not(Eol)* Eol

•  A fixed decimal literal (e.g.,
12.345) can be defined as:

Lit = D+. D+

• An optionally signed integer
literal can be defined as:

IntLiteral = ('+' | − | λ) D+

(Why the quotes on the plus?)

•  A comment delimited by ##
markers, which allows single #’s
within the comment body:

Comment2 =
((# | λ) Not(#))* ##

All finite sets and many infinite sets
are regular. But not all infinite sets
are regular. Consider the set of
balanced brackets of the form
[[[. . .]]]

This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is known not to be regular.
Any regular expression that tries to
define it either does not get all
balanced nestings or it includes
extra, unwanted strings.

©
CS 536 Spring 2015 64

Finite Automata and Scanners

©
CS 536 Spring 2015 65

A finite automaton (FA) can be
used to recognize the tokens
specified by a regular
expression. FAs are simple,
idealized computers that
recognize strings belonging to
regular sets. An FA consists of:
•  A finite set of states
•  A set of transitions (or moves) from

one state to another, labeled with
characters in Σ

•  A special state called the start state
•  A subset of the states called the

accepting, or final, states

These four components of a
finite automaton are often
represented graphically:

is a stateeof

is a transition

is the start state

is an accepting state

Finite automata (the plural of
automaton is automata) are
represented graphically using
transition diagrams. We start at
the start state. If the next input
character matches the label on

©
CS 536 Spring 2015 66

a transition from the current
state, we go to the state it
points to. If no move is
possible, we stop. If we finish in
an accepting state, the
sequence of characters read
forms a valid token; otherwise,
we have not seen a valid token.

In this diagram, the valid
tokens are the strings
described by the regular
expression (a b (c)+)+.

a

©
CS 536 Spring 2015 67

a c b

c

Deterministic Finite Automata

©
CS 536 Spring 2015 68

As an abbreviation, a transition may
be labeled with more than one
character (for example, Not(c)). The
transition may be taken if the
current input character matches any
of the characters labeling the
transition.

If an FA always has a unique
transition (for a given state and
character), the FA is deterministic
(that is, a deterministic FA, or DFA).
Deterministic finite automata are
easy to program and often drive a
scanner.
If there are transitions to more than
one state for some character, then
the FA is nondeterministic (that is,
an NFA).

A DFA is conveniently represented
in a computer by a transition
table. A transition table, T, is a
two dimensional array indexed by
a DFA state and a vocabulary
symbol.

©
CS 536 Spring 2015 69

Table entries are either a DFA state
or an error flag (often represented
as a blank table entry). If we are in
state s, and read character c, then
T[s,c] will be the next state we visit,
or T[s,c] will contain an error marker
indicating that c cannot extend the
current token. For example, the
regular expression

// Not(Eol)* Eol

which defines a Java or C+ +
single- line comment, might be
translated into

Not(Eol)

The corresponding transition
table is:

A complete transition table
contains one column for each
character. To save space, table
compression may be used. Only
non- error entries are explicitly
represented in the table, using
hashing, indirection or linked
structures.

Eol

©
CS 536 Spring 2015 70

/ /
1 2 3 4

State Character
/ Eol a b

1 2
2 3
3 3 4 3 3 3
4

All regular expressions can be
translated into DFAs that accept
(as valid tokens) the strings
defined by the regular
expressions. This translation can
be done manually by a
programmer or automatically
using a scanner generator.
A DFA can be coded in:
•  Table- driven form

•  Explicit control form

In the table- driven form, the
transition table that defines a
DFA’s actions is explicitly
represented in a run- time table
that is “interpreted” by a driver
program.
In the direct control form, the
transition table that defines a DFA’s
actions appears implicitly as the
control logic of the program.

©
CS 536 Spring 2015 71

For example, suppose
CurrentChar is the current input
character. End of file is
represented by a special character
value, eof. Using the DFA for the
Java comments shown earlier, a
table- driven scanner is:

©
CS 536 Spring 2015 72

State
while
if

= StartState
(true){

(CurrentChar
break

== eof)

NextState =
T[State][CurrentChar]

if(NextState == error)
break

State = NextState
read(CurrentChar)

}
if (State in AcceptingStates)

// Process valid token
// Signal a lexical errorelse

This form of scanner is produced
by a scanner generator; it is
definition- independent. The
scanner is a driver that can scan
any token if T contains the
appropriate transition table.

©
CS 536 Spring 2015 73

Here is an explicit- control scanner
for the same comment definition:
if (CurrentChar == '/')

{ read(CurrentChar)
if (CurrentChar == '/')

repeat
read(CurrentChar)

until (CurrentChar in
{eol, eof})

else //Signal lexical error
else // Signal lexical error

if (CurrentChar == eol)
token// Process valid

else //Signal lexical error

The token being scanned is
“hardwired” into the logic of the
code. The scanner is usually easy
to read and often is more
efficient, but is specific to a single
token definition.

©
CS 536 Spring 2015 74

More Examples
•  A FORTRAN- like real literal (which

requires digits on either or both
sides of a decimal point, or just a
string of digits) can be defined as

RealLit = (D+ (λ | .)) | (D* . D+)

This corresponds to the DFA

.

©
CS 536 Spring 2015 75

D

D D

D .

•  An identifier consisting of letters,
digits, and underscores, which
begins with a letter and allows no
adjacent or trailing underscores,
may be defined as

ID = L (L | D)* (_ (L | D)+)*

This definition includes identifiers
like sum or unit_cost, but
excludes _one and two_ and
grand total. The DFA is:

L | D

©
CS 536 Spring 2015 76

L

L | D

_

Lex/Flex/JLex

©
CS 536 Spring 2015 77

Lex is a well- known Unix scanner
generator. It builds a scanner, in C,
from a set of regular expressions
that define the tokens to be
scanned.

Flex is a newer and faster version of
Lex.

JLex is a Java version of Lex. It
generates a scanner coded in Java,
though its regular expression
definitions are very close to those
used by Lex and Flex.

Lex, Flex and JLex are largely non-
procedural. You don’t need to tell
the tools how to scan. All you need
to tell it what you want scanned
(by giving it definitions of valid
tokens).

This approach greatly simplifies
building a scanner, since most of
the details of scanning (I/O,
buffering, character matching,
etc.) are automatically handled.

©
CS 536 Spring 2015 78

JLex

©
CS 536 Spring 2015 79

JLex is coded in Java. To use it,
you enter
java JLex.Main f.jlex

Your CLASSPATH should be set to
search the directories where
JLex’s classes are stored.
(In build files we provide the
CLASSPATH used will include
JLex’s classes).
After JLex runs (assuming there
are no errors in your token
specifications), the Java source file
f.jlex.java is created. (f stands
for any file name you choose.
Thus csx.jlex might hold token
definitions for CSX, and
csx.jlex.java would hold the
generated scanner).

You compile f.jlex.java just
like any Java program, using your
favorite Java compiler.
After compilation, the class file
Yylex.class is created.
It contains the methods:
•  Token yylex() which is the actual

scanner. The constructor for Yylex
takes the file you want scanned, so
new Yylex(System.in)
will build a scanner that reads from
System.in. Token is the token
class you want returned by the
scanner; you can tell JLex what
class you want returned.

•  String yytext() returns the
character text matched by the last
call to yylex.

©
CS 536 Spring 2015 80

Input to JLex

©
CS 536 Spring 2015 81

There are three sections,
delimited by %%. The general
structure is:
User Code
%%
Jlex
%%

Directives

Regular Expression rules

The User Code section is Java
source code to be copied into the
generated Java source file. It
contains utility classes or return
type classes you need. Thus if you
want to return a class
IntlitToken (for integer literals
that are scanned), you include its
definition in the User Code
section.

JLex directives are various
instructions you can give JLex to
customize the scanner you
generate.
These are detailed in the JLex
manual. The most important are:
• %{

©
CS 536 Spring 2015 82

Code
class

copied into
(extra

the Yylex
fields or

methods
%}

•  %eof{

you may want)

Java code to be executed when
the end of file is reached
%eof}

•  %type classname
classname is the return type you
want for the scanner method,
yylex()

Macro Definitions

©
CS 536 Spring 2015 83

In section two you may also define
macros, that are used in section
three. A macro allows you to give
a name to a regular expression or
character class. This allows you to
reuse definitions and make
regular expression rule more
readable.
Macro definitions are of the form
name = def

Macros are defined one per line.
Here are some simple examples:
Digit=[0-9]
AnyLet=[A-Za-z]
In section 3, you use a macro by
placing its name within { and }.
Thus {Digit} expands to the
character class defining the digits
0 to 9.

Regular Expression Rules

©
CS 536 Spring 2015 84

The third section of the JLex input
file is a series of token definition
rules of the form
RegExpr {Java code}
When a token matching the given
RegExpr is matched, the
corresponding Java code (enclosed
in “{“ and “}”) is executed. JLex
figures out which RegExpr applies;
you need only say what the token
looks like (using RegExpr) and what
you want done when the token is
matched.

(this is usually to return some token
object, perhaps with some
processing of the token text).

Here are some examples:

©
CS 536 Spring 2015 85

"+" {return new Token(sym.Plus);}

{/* skip white space */}(" ")+

{Digit}+ {return
new IntToken(sym.Intlit,
new Integer(yytext()).intValue());}

Regular Expressions in JLex

©
CS 536 Spring 2015 86

To define a token in JLex, the user
to associates a regular expression
with commands coded in Java.
When input characters that match
a regular expression are read, the
corresponding Java code is
executed. As a user of JLex you
don’t need to tell it how to match
tokens; you need only say what
you want done when a particular
token is matched.
Tokens like white space are
deleted simply by having their
associated command not return
anything. Scanning continues
until a command with a return in
it is executed.
The simplest form of regular
expression is a single string that
matches exactly itself.

For example,
if {return new Token(sym.If);}

If you wish, you can quote the
string representing the reserved
word ("if"), but since the string
contains no delimiters or
operators, quoting it is
unnecessary.
For a regular expression operator,
like + , quoting is necessary:

©
CS 536 Spring 2015 87

"+" {return
new Token(sym.Plus);}

Character Classes

©
CS 536 Spring 2015 8

8

Our specification of the reserved
word if, as shown earlier, is
incomplete. We don’t (yet) handle
upper or mixed- case.
To extend our definition, we’ll use a
very useful feature of Lex and JLex—
character classes.
Characters often naturally fall into
classes, with all characters in a class
treated identically in a token
definition. In our definition of
identifiers all letters form a class
since any of them can be used to
form an identifier. Similarly, in a
number, any of the ten digit
characters can be used.

Character classes are delimited by
[and]; individual characters are
listed without any quotation or
separators. However \, ̂ ,] and -,
because of their special meaning
in character classes, must be
escaped. The character class
[xyz] can match a single x, y, or
z.
The character class [\])] can
match a single] or).
(The] is escaped so that it isn’t
misinterpreted as the end of
character class.)
Ranges of characters are
separated by a -; [x-z] is the
same as [xyz]. [0-9] is the set
of all digits and [a-zA-Z] is the
set of all letters, upper- and

©
CS 536 Spring 2015 8

9

lower- case. \ is the escape
character, used to represent

unprintables and to escape
special symbols.
Following C and Java conventions,
\n is the newline (that is, end of
line), \t is the tab character, \\ is
the backslash symbol itself, and
\010 is the character
corresponding to octal 10.
The ^ symbol complements a
character class (it is JLex’s
representation of the Not
operation).
[^xy] is the character class that
matches any single character
except x and y. The ^ symbol
applies to all characters that
follow it in a character class
definition, so [^0-9] is the set of
all characters that aren’t digits.
[^] can be used to match all
characters.

©
CS 536 Spring 2015 90

Here are some examples of
character classes:

Character

©
CS 536 Spring 2015 9

1

Class
[abc]
[cba]
[a-c]
[aabbcc]
[^abc]

Set of Characters Denoted
Three characters: a, b and c
Three characters: a, b and c
Three characters: a, b and c
Three characters: a, b and c
All characters except a, b
and c
Three characters: ^, - and]
All characters
Not a character class. This
is one five character string:
[abc]

[\^\-\]]
[^]
"[abc]"

Regular Operators in JLex

©
CS 536 Spring 2015 9

2

JLex provides the standard regular
operators, plus some additions.
•  Catenation is specified by the

juxtaposition of two expressions;
no explicit operator is used.
Outside of character class brackets,
individual letters and numbers
match themselves; other characters
should be quoted (to avoid
misinterpretation as regular
expression operators).

Case is significant.

Regular Expr
a b cd
(a)(b)(cd)
[ab][cd]

Characters Matched
Four characters: abcd
Four characters: abcd
Four different strings: ac or
ad or bc or bd
Five characters: while
Five characters: while
Five characters: while

while
"while"
[w][h][i][l][e]

•  The alternation operator is |.
Parentheses can be used to control
grouping of subexpressions.
If we wish to match the reserved

©
CS 536 Spring 2015 9

3

word while allowing any mixture
of upper- and lowercase, we can
use (w|W)(h|H)(i|I)(l|L)(e|
E) or
[wW][hH][iI][lL][eE]

Regular Expr
ab|cd
(ab)|(cd)
[ab]|[cd]

Characters Matched
Two different strings: ab or cd
Two different strings: ab or cd
Four different strings: a or b or
c or d

•  Postfix operators:
* Kleene closure: 0 or more
matches.
(ab)* matches λ or ab or abab or
ababab ...

+ Positive closure: 1 or more
matches.
(ab)+ matches ab or abab or
ababab ...

? Optional inclusion:

expr?
matches expr zero times or once.
expr? is equivalent to (expr) | λ
and eliminates the need for an
explicit λ symbol.

[-+]?[0-9]+ defines an optionally
signed integer literal.

©
CS 536 Spring 2015 9

4

•  Single match:
The character "." matches any
single character (other than a
newline).

•  Start of line:
The character ̂ (when used outside
a character class) matches the
beginning of a line.

•  End of line:
The character $ matches the end of
a line. Thus,
^A.*e$

matches an entire line that begins
with A and ends with e.

©
CS 536 Spring 2015 9

5

Overlapping Definitions

©
CS 536 Spring 2015 9

6

Regular expressions may overlap
(match the same input sequence).

In the case of overlap, two rules
determine which regular
expression is matched:

•  The longest possible match is
performed. JLex automatically
buffers characters while
deciding how many characters
can be matched.

•  If two expressions match exactly
the same string, the earlier
expression (in the JLex
specification) is preferred.
Reserved words, for example, are
often special cases of the pattern
used for identifiers. Their
definitions are therefore placed
before the expression that
defines an identifier token.

Often a “catch all” pattern is
placed at the very end of the
regular expression rules. It is
used to catch characters that
don’t match any of the earlier
patterns and hence are probably
erroneous. Recall that "." matches
any single character (other than a
newline). It is useful in a catch- all
pattern. However, avoid a pattern
like .* which will consume all
characters up to the next newline.
In JLex an unmatched character
will cause a run- time error.

The operators and special
symbols most commonly used in
JLex are summarized below. Note
that a symbol sometimes has one
meaning in a regular expression
and an entirely different meaning

©
CS 536 Spring 2015 9

7

in a character class (i.e., within a
pair of brackets). If you find JLex
behaving unexpectedly, it’s a
good idea to check this table to
be sure of how the operators and
symbols you’ve used behave.
Ordinary letters and digits, and
symbols not mentioned (like @)
represent themselves. If you’re
not sure if a character is special or
not, you can always escape it or
make it part of a quoted string.

©
CS 536 Spring 2015 9

8

©
CS 536 Spring 2015 9

9

Symbol Meaning in Regular
Expressions

Meaning in
Character
Classes

(Matches with) to group sub-
expressions.

Represents itself.

) Matches with (to group sub-
expressions.

Represents itself.

[Begins a character class. Represents itself.
] Represents itself. Ends a character

class.
{ Matches with } to signal

macro-expansion.
Represents itself.

} Matches with { to signal
macro-expansion.

Represents itself.

" Matches with " to delimit
strings
(only \ is special within
strings).

Represents itself.

\ Escapes individual charac-
ters.
Also used to specify a char-
acter by its octal code.

Escapes individual
characters.
Also used to spec-
ify a character by
its octal code.

. Matches any one character
except \n.

Represents itself.

| Alternation (or) operator. Represents itself.

©
CS 536 Spring 2015 10

0

Symbol Meaning in Regular
Expressions

Meaning in
Character
Classes

* Kleene closure operator (zero
or more matches).

Represents itself.

+ Positive closure operator
(one or more matches).

Represents itself.

? Optional choice operator
(one or zero matches).

Represents itself.

/ Context sensitive matching
operator.

Represents itself.

^ Matches only at beginning of
a line.

Complements
remaining
characters in the
class.

$ Matches only at end of a line. Represents itself.
- Represents itself. Range of charac-

ters operator.

Potential Problems in Using
JLex

©
CS 536 Spring 2015 10

1

The following differences from
“standard” Lex notation appear in
JLex:
•  Escaped characters within quoted

strings are not recognized. Hence
"\n" is not a new line character.
Escaped characters outside of
quoted strings (\n) and escaped
characters within character classes
([\n]) are OK.

•  A blank should not be used within a
character class (i.e., [and]). You
may use \040 (which is the
character code for a blank).

•  A doublequote must be escaped
within a character class. Use [\"]
instead of ["].

•  Unprintables are defined to be all
characters before blank as well as
the last ASCII character.
Unprintables can be represented
as:[\000-\037\177]

©
CS 536 Spring 2015 10

2

