
CS 536

©
CS 536 Spring 2015 1

Introduction to
Programming Languages

and Compilers
Charles N. Fischer

Lecture 6

Optimizing Finite Automata

©
CS 536 Spring 2015 15

7

We can improve the DFA created by
MakeDeterministic.
Sometimes a DFA will have more
states than necessary. For every
DFA there is a unique smallest
equivalent DFA (fewest states
possible).
Some DFA’s contain unreachable
states that cannot be reached from
the start state.
Other DFA’s may contain dead
states that cannot reach any
accepting state.
It is clear that neither unreachable
states nor dead states can
participate in scanning any valid
token. We therefore eliminate all
such states as part of our
optimization process.

We optimize a DFA by merging
together states we know to be
equivalent.

©
CS 536 Spring 2015 15

8

For example, two accepting states
that have no transitions at all out
of them are equivalent.
Why? Because they behave exactly
the same way—they accept the
string read so far, but will accept
no additional characters.
If two states, s1 and s2, are
equivalent, then all transitions to
s2 can be replaced with
transitions to s1. In effect, the two
states are merged together into
one common state.

How do we decide what states to
merge together?

We take a greedy approach and
try the most optimistic merger of
states. By definition, accepting
and non- accepting states are
distinct, so we initially try to
create only two states: one
representing the merger of all
accepting states and the other
representing the merger of all
non- accepting states.

©
CS 536 Spring 2015 15

9

This merger into only two states
is almost certainly too optimistic.
In particular, all the constituents
of a merged state must agree on
the same transition for each
possible character. That is, for
character c all the merged states
must have no successor under c
or they must all go to a single
(possibly merged) state.
If all constituents of a merged
state do not agree on the

transition to follow for some
character, the merged state is
split into two or more smaller
states that do agree.
As an example, assume we start
with the following automaton:

Initially we have a merged non-
accepting state {1,2,3,5,6} and a
merged accepting state {4,7}.
A merger is legal if and only if all
constituent states agree on the
same successor state for all
characters. For example, states 3
and 6 would go to an accepting
state given character c; states 1, 2,
5 would not, so a split must occur.

a

b

©
CS 536 Spring 2015 16

0

b c

c
d

1 2 3 4

5 6 7

We will add an error state sE to the
original DFA that is the successor
state under any illegal character.
(Thus reaching sE becomes
equivalent to detecting an illegal
token.) sE is not a real state; rather
it allows us to assume every state
has a successor under every
character. sE is never merged with
any real state.
Algorithm Split , shown below,
splits merged states whose
constituents do not agree on a
common successor state for all
characters. When Split
terminates, we know that the
states that remain merged are
equivalent in that they always
agree on common successors.

©
CS 536 Spring 2015 16

1

Split(FASet StateSet)
{ repeat
for(each merged state S in StateSet)

{ Let S correspond to {s1,...,sn}
for(each char c in Alphabet)

{ Let t1,...,tn be the successor
states to s1,...,sn under c
if(t1,...,tn do not all belong to

the same merged state){
Split S into two or more new
statessuch that si and sj
remainin the same merged
state if and only if ti and tj
are in the same merged state}

}
until no more splits are possible

}

©
CS 536 Spring 2015 16

2

Returning to our example, we
initially have states {1,2,3,5,6} and
{4,7}. Invoking Split , we first
observe that states 3 and 6 have a
common successor under c, and
states 1, 2, and 5 have no
successor under c (equivalently,
have the error state sE as a
successor).
This forces a split, yielding {1,2,5},
{3,6} and {4,7}.
Now, for character b, states 2 and
5 would go to the merged state
{3,6}, but state 1 would not, so
another split occurs.
We now have: {1}, {2,5}, {3,6} and
{4,7}.
At this point we are done, as all
constituents of merged states
agree on the same successor for
each input symbol.

©
CS 536 Spring 2015 16

3

Once Split is executed, we are
essentially done.
Transitions between merged
states are the same as the
transitions between states in the
original DFA.
Thus, if there was a transition
between state si and sj under
character c, there is now a
transition under c from the
merged state containing si to the
merged state containing sj. The
start state is that merged state
containing the original start state.
Accepting states are those
merged states containing
accepting states (recall that
accepting and non- accepting
states are never merged).

©
CS 536 Spring 2015 16

4

Returning to our example, the
minimum state automaton we
obtain is

a | d b c
1

©
CS 536 Spring 2015 16

5

2,5 3,6 4,7

Properties of Regular
Expressions and Finite

Automata

©
CS 536 Spring 2015 16

6

•  Some token patterns can’t be defined
as regular expressions or finite
automata. Consider the set of
balanced brackets of the form [[[.]]].
This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is not regular.
No finite automaton that recognizes
exactly this set can exist.
Why? Consider the inputs [, [[, [[[, ...
For two different counts (call them i
and j) [i and [j must reach the same
state of a given FA! (Why?)
Once that happens, we know that if [i]i

is accepted (as it should be), the [j]i

will also be accepted (and that should
not happen).

•  R = V* - R is regular if R is.
Why?
Build a finite automaton for R. Be
careful to include transitions to an
“error state” sE for illegal characters.
Now invert final and non- final states.
What was previously accepted is now
rejected, and what was rejected is now
accepted. That is, R is accepted by the
modified automaton.

•  Not all subsets of a regular set are

themselves regular. The regular
expression [+]+ has a subset that isn’t
regular. (What is that subset?)

©
CS 536 Spring 2015 16

7

•  Let R be a set of strings. Define Rrev as
all strings in R, in reversed (backward)
character order.
Thus if R = {abc, def}
then Rrev = {cba, fed}.
If R is regular, then Rrev is too.
Why? Build a finite automaton for R.
Make sure the automaton has only one
final state. Now reverse the direction
of all transitions, and interchange the
start and final states. What does the
modified automation accept?

©
CS 536 Spring 2015 16

8

•  If R1 and R2 are both regular, then

R1 ∩ R2 is also regular. We can show
this two different ways:
1. Build two finite automata, one

for R1 and one for R2. Pair
together states of the two
automata to match R1 and R2
simultaneously. The paired-
state automaton accepts only if
both R1 and R2 would, so
R1 ∩ R2 is matched.

2. We can use the fact that R1 ∩ R2

is = R1 ∪ R2 We already know

union and complementation are
regular.

©
CS 536 Spring 2015 16

9

Reading Assignment

©
CS 536 Spring 2015 17

0

•  Read Chapter 4 of
Craf t ing a Compi ler

Context Free Grammars

©
CS 536 Spring 2015 17

1

A context- free grammar (CFG) is
defined as:
•  A finite terminal set Vt;

these are the tokens produced by
the scanner.

•  A set of intermediate symbols,
called non- terminals, Vn.

•  A start symbol, a designated non-
terminal, that starts all derivations.

•  A set of productions (sometimes
called rewriting rules) of the form

A → X1 ... Xm
X1 to Xm may be any
combination of terminals and
non- terminals.

If m = 0 we have A → λ
which is a valid production.

Example

©
CS 536 Spring 2015 17

2

Prog → { Stmts }
Stmts →Stmts ; Stmt
Stmts →Stmt
Stmt →id = Expr
Expr →id
Expr →Expr + id

Often more than one production
shares the same left- hand side.
Rather than repeat the left hand
side, an “or notation” is used:

Prog → { Stmts }
Stmts →Stmts ; Stmt

| Stmt
Stmt →id = Expr
Expr →id

| Expr + id

©
CS 536 Spring 2015 17

3

Derivations

©
CS 536 Spring 2015 17

4

Starting with the start symbol, non-
terminals are rewritten using
productions until only terminals
remain.
Any terminal sequence that can
be generated in this manner is
syntactically valid.

If a terminal sequence can’t be
generated using the productions of
the grammar it is invalid (has
syntax errors).

The set of strings derivable from
the start symbol is the language of
the grammar (sometimes denoted
L(G)).

For example, starting at Prog we
generate a terminal sequence, by
repeatedly applying productions:
Prog
{ Stmts }
{ Stmts ; Stmt }
{ Stmt ; Stmt }
{ id = Expr ; Stmt }
{ id = id ; Stmt }
{ id = id ; id = Expr }
{ id = id ; id = Expr + id}
{ id = id ; id = id + id}

©
CS 536 Spring 2015 17

5

Parse Trees
To illustrate a derivation, we can
draw a derivation tree (also called a
parse tree):

Prog

{ Stmts }

Stmts ; Stmt

Stmt

id = Expr

id

id = Expr

Expr + id

id

©
CS 536 Spring 2015 17

6

An abstract syntax tree (AST)
shows essential structure but
eliminates unnecessary delimiters
and intermediate symbols:

Prog

Stmts

Stmts

=

id id

=

id +

id id

©
CS 536 Spring 2015 17

7

If A → γ is a production then
αAβ ⇒ αγβ

where ⇒ denotes a one step
derivation (using production
A → γ).

We extend ⇒ to ⇒+ (derives in
one or more steps), and ⇒*

(derives in zero or more steps).
We can show our earlier derivation
as
Prog ⇒
{ Stmts } ⇒
{ Stmts ; Stmt } ⇒
{ Stmt ; Stmt } ⇒
{ id = Expr ; Stmt } ⇒
{ id = id ; Stmt } ⇒
{ id = id ; id = Expr } ⇒
{ id = id ; id = Expr + id} ⇒
{ id = id ; id = id + id}
Prog ⇒+ { id = id ; id = id + id}

©
CS 536 Spring 2015 17

8

When deriving a token sequence,
if more than one non- terminal is
present, we have a choice of
which to expand next.
We must specify, at each step,
which non- terminal is expanded,
and what production is applied.
For simplicity we adopt a
convention on what non- terminal
is expanded at each step.
We can choose the leftmost
possible non- terminal at each
step.
A derivation that follows this rule
is a leftmost derivation.
If we know a derivation is
leftmost, we need only specify
what productions are used; the
choice of non- terminal is always
fixed.

©
CS 536 Spring 2015 17

9

To denote derivations that are
leftmost,

©
CS 536 Spring 2015 18

0

we use ⇒L, ⇒+ , and ⇒*
L L

The production sequence
discovered by a large class of
parsers (the top- down parsers) is
a leftmost derivation, hence these
parsers produce a leftmost parse.
Prog ⇒L

{ Stmts } ⇒L

{ Stmts ; Stmt } ⇒L

{ Stmt ; Stmt } ⇒L

{ id = Expr ; Stmt } ⇒L

{ id = id ; Stmt } ⇒L

{ id = id ; id = Expr } ⇒L

{ id = id ; id = Expr + id} ⇒L

{ id = id ; id = id + id}

Prog ⇒L
+ { id = id ; id = id + id}

Rightmost Derivations

©
CS 536 Spring 2015 18

1

A rightmost derivation is an
alternative to a leftmost
derivation. Now the rightmost
non- terminal is always expanded.
This derivation sequence may
seem less intuitive given our
normal left- to- right bias, but it
corresponds to an important class
of parsers (the bottom- up
parsers, including CUP).
As a bottom- up parser discovers
the productions used to derive a
token sequence, it discovers a
rightmost derivation, but in
reverse order.
The last production applied in a
rightmost derivation is the first
that is discovered. The first
production used, involving the
start symbol, is discovered last.

The sequence of productions
recognized by a bottom- up
parser is a rightmost parse.
It is the exact reverse of the
production sequence that
represents a rightmost derivation.
For rightmost derivations, we use

©
CS 536 Spring 2015 18

2

the notation ⇒R, ⇒+ , and ⇒*
R R

Prog ⇒R

{ Stmts } ⇒R

{ Stmts ; Stmt } ⇒R

{ Stmts ; id = Expr } ⇒R

{ Stmts ; id = Expr + id } ⇒R

{ Stmts ; id = id + id } ⇒R

{ Stmt ; id = id + id } ⇒R

{ id = Expr ; id = id + id } ⇒R

{ id = id ; id = id + id}
Prog ⇒+ { id = id ; id = id + id}

You can derive the same set of
tokens using leftmost and
rightmost derivations; the only
difference is the order in which
productions are used.

©
CS 536 Spring 2015 18

3

Ambiguous Grammars

©
CS 536 Spring 2015 18

4

Some grammars allow more than
one parse tree for the same token
sequence. Such grammars are
ambiguous. Because compilers use
syntactic structure to drive
translation, ambiguity is undesirable
—it may lead to an unexpected
translation.
Consider

E → E - E
| id

When parsing the input a- b- c
(where a, b and c are scanned as
identifiers) we can build the
following two parse trees:

The effect is to parse a- b- c as
either (a- b)- c or a- (b- c). These
two groupings are certainly not
equivalent.
Ambiguous grammars are usually
voided in building compilers; the
tools we use, like Yacc and CUP,
strongly prefer unambiguous
grammars.
To correct this ambiguity, we use
E → E - id

| id

©
CS 536 Spring 2015 18

5

E
E	
 E

E E	

E	

E	
 E	

E	
 E	

id	
 id	
 id	
 id	
 id	
 id	

-­‐	
 -­‐	

-­‐	
 -­‐	

Now a- b- c can only be parsed as:

E
E -

E -

id id id

©
CS 536 Spring 2015 18

6

Operator Precedence

©
CS 536 Spring 2015 18

7

Most programming languages
have operator precedence rules
that state the order in which
operators are applied (in the
absence of explicit parentheses).
Thus in C and Java and CSX, a
+b*c means compute b*c, then
add in a.
These operators precedence rules
can be incorporated directly into a
CFG.
Consider
E → E + T

| T
T → T * P

| P
P → id

| (E)

Does a+b*c mean (a+b)*c or
a+(b*c)?
The grammar tells us! Look at the
derivation tree:

E
E + T

T T * P

P P

id id id

The other grouping can’t be
obtained unless explicit
parentheses are used.
(Why?)

©
CS 536 Spring 2015 18

8

Java CUP

©
CS 536 Spring 2015 18

9

Java CUP is a parser- generation
tool, similar to Yacc.
CUP builds a Java parser for
LALR(1) grammars from
production rules and associated
Java code fragments.
When a particular production is
recognized, its associated code
fragment is executed (typically to
build an AST).
CUP generates a Java source file
parser.java. It contains a class
parser, with a method
Symbol parse()

The Symbol returned by the parser
is associated with the grammar’s
start symbol and contains the AST
for the whole source program.

The file sym.java is also built for
use with a JLex- built scanner (so
that both scanner and parser use
the same token codes).
If an unrecovered syntax error
occurs, Exception() is thrown by
the parser.
CUP and Yacc accept exactly the
same class of grammars—all LL(1)
grammars, plus many useful non-
LL(1) grammars.
CUP is called as
java java_cup.Main < file.cup

©
CS 536 Spring 2015 19

0

Java CUP Specifications

©
CS 536 Spring 2015 19

1

Java CUP specifications are of the
form:
•  Package and import specifications

•  User code additions

•  Terminal and non- terminal
declarations

•  A context- free grammar,
augmented with Java code
fragments

Package and Import Specifications
You define a package name as:
package name ;

You add imports to be used as:
import java_cup.runtime.*;

User Code Additions

©
CS 536 Spring 2015 19

2

You may define Java code to be
included within the generated
parser:
action code {: /*java code */ :}
This code is placed within the
generated action class (which
holds user- specified production
actions).
parser code {: /*java code */ :}
This code is placed within the
generated parser class.
init with{: /*java code */ :}
This code is used to initialize the
generated parser.
scan with{: /*java code */ :}
This code is used to tell the
generated parser how to get
tokens from the scanner.

Terminal and Non-terminal
Declarations

©
CS 536 Spring 2015 19

3

You define terminal symbols you
will use as:
terminal classname name1, name2, ...

classname is a class used by the
scanner for tokens (CSXToken,
CSXIdentifierToken, etc.)

You define non- terminal symbols
you will use as:
non terminal classname name1, name2, ...

classname is the class for the
AST node associated with the
non- terminal (stmtNode,
exprNode, etc.)

Production Rules

©
CS 536 Spring 2015 19

4

Production rules are of the form
name ::=

or
name ::=

name1 name2 ... action ;

name1
name2 ...action1

| name3 name4
| ...
;

... action2

Names are the names of terminals
or non- terminals, as declared
earlier.
Actions are Java code fragments,
of the form
{: /*java code */ :}

The Java object assocated with a
symbol (a token or AST node) may
be named by adding a :id suffix
to a terminal or non- terminal in a
rule.

RESULT names the left- hand side
non- terminal.
The Java classes of the symbols
are defined in the terminal and
non- terminal declaration
sections.
For example,
prog ::= LBRACE:l stmts:s RBRACE

{: RESULT =
new csxLiteNode(s,
l.linenum,l.colnum); :}

This corresponds to the production
prog → { stmts }
The left brace is named l; the
stmts non- terminal is called s.
In the action code, a new
CSXLiteNode is created and
assigned to prog. It is constructed
from the AST node associated
with s. Its line and column

©
CS 536 Spring 2015 19

5

numbers are those given to the
left brace, l (by the scanner).

To tell CUP what non- terminal to
use as the start symbol (prog in
our example), we use the
directive:
start with prog;

©
CS 536 Spring 2015 19

6

Example

©
CS 536 Spring 2015 19

7

Let’s look at the CUP specification
for CSX- lite. Recall its CFG is

program →
st mts → st mt

{ st mts }
st mts

| λ
st mt → i d

| i f
= expr ;
(expr) st mt

expr → expr + id
| expr - id
| id

The corresponding CUP
specification is:
/***
This Is A Java CUP Specification For
CSX-lite, a Small Subset of The CSX
Language, Used In Cs536
***/

/* Preliminaries to set up and use the
scanner. */

import java_cup.runtime.*;
parser code {:
public void syntax_error
(Symbol cur_token){
report_error(
“CSX syntax error at line “+
String.valueOf(((CSXToken)

cur_token.value).linenum),
null);}

:};

init with {: :};
scan with {:

return Scanner.next_token();
:};

©
CS 536 Spring 2015 19

8

/* Terminals (tokens returned by the
scanner). */
terminal CSXIdentifierToken IDENTIFIER;

©
CS 536 Spring 2015 19

9

terminal CSXToken SEMI,
ASG, LBRACE, RBRACE;
terminal CSXToken PLUS,

/* Non terminals */

LPAREN, RPAREN,

MINUS, rw_IF;

start with prog;

prog::= LBRACE:l stmts:s RBRACE
{: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

stmts::= stmt:s1 stmts:s2
{: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

:}

non terminal csxLiteNode prog;
non terminal stmtsNode stmts;
non terminal stmtNode stmt;
non terminal exprNode exp;
non terminal nameNode ident;

|
{: RESULT= stmtsNode.NULL; :}
;
stmt::= ident:id ASG exp:e SEMI
{: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

:}

| rw_IF:i LPAREN exp:e RPAREN stmt:s
{: RESULT=new ifThenNode(e,s,

stmtNode.NULL,
i.linenum,i.colnum); :}

;
exp::=
exp:leftval PLUS:op ident:rightval
{: RESULT=new binaryOpNode(leftval,

sym.PLUS, rightval,
op.linenum,op.colnum); :}

| exp:leftval MINUS:op ident:rightval
{: RESULT=new binaryOpNode(leftval,

sym.MINUS,rightval,
op.linenum,op.colnum); :}

| ident:i
{: RESULT = i; :}
;

©
CS 536 Spring 2015 20

0

ident::= IDENTIFIER:i
{: RESULT = new nameNode(

new identNode(i.identifierText,
i.linenum,i.colnum),

exprNode.NULL,
i.linenum,i.colnum); :}

;

©
CS 536 Spring 2015 20

1

Let’s parse

{ a = b ; }
First, a is parsed using
ident::= IDENTIFIER:i
{: RESULT = new nameNode(
new identNode(i.identifierText,

i.linenum,i.colnum),
exprNode.NULL,

i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
a

©
CS 536 Spring 2015 20

2

Next, b is parsed using
ident::= IDENTIFIER:i
{: RESULT = new nameNode(
new identNode(i.identifierText,

i.linenum,i.colnum),
exprNode.NULL,

i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
b

©
CS 536 Spring 2015 20

3

Then b’s subtree is recognized as
an exp:
| ident:i
{: RESULT = i; :}

Now the assignment statement is
recognized:
stmt::= ident:id ASG exp:e SEMI
{: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

:}

We build

asgNode

nameNode

identNode
a

nameNode

nullExprNode

©
CS 536 Spring 2015 20

4

nullExprNode identNode
b

Next,
st mts → st mt
is matched using

st mts

stmts::= stmt:s1 stmts:s2
{: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

:}

The st mts → λ production is
matched (indicating that there are
no more statements in the
program).
CUP matches
stmts::=
{: RESULT= stmtsNode.NULL; :}

and we build

nullStmtsNode

©
CS 536 Spring 2015 20

5

This builds

a

As the last step of the parse, the
parser matches
program → { st mts }
using the CUP rule
prog::= LBRACE:l stmts:s RBRACE
{: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

nameNode

identNode

nameNode

nullExprNode

asgNode

stmtsNode

nullStmtsNode

©
CS 536 Spring 2015 20

6

nullExprNode identNode
b

The final AST reurned by the
parser is

nameNode

identNode
a

nameNode

nullExprNode

asgNode

stmtsNode

nullStmtsNode

csxLiteNode

©
CS 536 Spring 2015 20

7

nullExprNode identNode
b

