CS 536
 Introduction to Programming Languages and Compilers
 Charles N. Fischer
 Lecture 6

Optimizing Finite Automata

We can improve the DFA created by MakeDeterministic.
Sometimes a DFA will have more states than necessary. For every DFA there is a unique smallest equivalent DFA (fewest states possible).
Some DFA's contain unreachable states that cannot be reached from the start state.
Other DFA's may contain dead states that cannot reach any accepting state.
It is clear that neither unreachable states nor dead states can participate in scanning any valid token. We therefore eliminate all such states as part of our optimization process.

We optimize a DFA by merging together states we know to be equivalent.
For example, two accepting states that have no transitions at all out of them are equivalent.
Why? Because they behave exactly the same way-they accept the string read so far, but will accept no additional characters. If two states, s_{1} and s_{2}, are equivalent, then all transitions to s_{2} can be replaced with transitions to s_{1}. In effect, the two states are merged together into one common state.

How do we decide what states to merge together?

We take a greedy approach and try the most optimistic merger of states. By definition, accepting and non- accepting states are distinct, so we initially try to create only two states: one representing the merger of all accepting states and the other representing the merger of all non- accepting states.
This merger into only two states is almost certainly too optimistic. In particular, all the constituents of a merged state must agree on the same transition for each possible character. That is, for character c all the merged states must have no successor under c or they must all go to a single (possibly merged) state.
If all constituents of a merged state do not agree on the
transition to follow for some character, the merged state is split into two or more smaller states that do agree.
As an example, assume we start with the following automaton:

Initially we have a merged nonaccepting state $\{1,2,3,5,6\}$ and a merged accepting state $\{4,7\}$.
A merger is legal if and only if all constituent states agree on the same successor state for all characters. For example, states 3 and 6 would go to an accepting state given character c; states 1,2, 5 would not, so a split must occur.

We will add an error state s_{E} to the original DFA that is the successor state under any illegal character. (Thus reaching s_{E} becomes equivalent to detecting an illegal token.) s_{E} is not a real state; rather it allows us to assume every state has a successor under every character. s_{E} is never merged with any real state.
Algorithm Split, shown below, splits merged states whose constituents do not agree on a common successor state for all characters. When Split terminates, we know that the states that remain merged are equivalent in that they always agree on common successors.

Split(FASet StateSet)
\{ repeat
for (each merged state S in StateSet)
\{ Let S correspond to $\left\{s_{1}, \ldots, s_{n}\right\}$ for (each char c in Alphabet) \{ Let t_{1}, \ldots, t_{n} be the successor states to s_{1}, \ldots, s_{n} under c if $\left(t_{1}, \ldots, t_{n}\right.$ do not all belong to the same merged state) \{ Split S into two or more new statessuch that s_{i} and s_{j} remainin the same merged state if and only if t_{i} and t_{j} are in the same merged state\} \}
until no more splits are possible \}

Returning to our example, we initially have states $\{1,2,3,5,6\}$ and $\{4,7\}$. Invoking Split, we first observe that states 3 and 6 have a common successor under c, and states 1,2 , and 5 have no
successor under c (equivalently,
have the error state s_{E} as a successor).
This forces a split, yielding $\{1,2,5\}$, $\{3,6\}$ and $\{4,7\}$.
Now, for character b, states 2 and 5 would go to the merged state $\{3,6\}$, but state 1 would not, so another split occurs.
We now have: $\{1\},\{2,5\},\{3,6\}$ and $\{4,7\}$.
At this point we are done, as all constituents of merged states agree on the same successor for each input symbol.

Once Split is executed, we are essentially done.
Transitions between merged states are the same as the transitions between states in the original DFA.
Thus, if there was a transition between state s_{i} and s_{j} under character c, there is now a transition under c from the merged state containing s_{i} to the merged state containing s_{j}. The start state is that merged state containing the original start state.
Accepting states are those merged states containing accepting states (recall that accepting and non- accepting states are never merged).

Returning to our example, the minimum state automaton we obtain is

Properties of Regular Expressions and Finite Automata

- Some token patterns can't be defined as regular expressions or finite automata. Consider the set of balanced brackets of the form [[[.]]]. This set is defined formally as
$\left\{\left[^{\mathrm{m}}\right]^{\mathrm{m}} \mid \mathrm{m} \geq 1\right\}$.
This set is not regular.
No finite automaton that recognizes exactly this set can exist. Why? Consider the inputs [, [[, [[], ... For two different counts (call them i and j) [${ }^{i}$ and $[j$ must reach the same state of a given FA! (Why?)
Once that happens, we know that if [[]i is accepted (as it should be), the [j]i will also be accepted (and that should not happen).
- $\mathrm{R}=\mathrm{V}^{*}-\mathrm{R}$ is regular if R is.

Why?
Build a finite automaton for R. Be careful to include transitions to an "error state" s_{E} for illegal characters. Now invert final and non- final states. What was previously accepted is now rejected, and what was rejected is now accepted. That is, \bar{R} is accepted by the modified automaton.

- Not all subsets of a regular set are themselves regular. The regular expression $\left[^{+}\right]^{+}$has a subset that isn't regular. (What is that subset?)
- Let R be a set of strings. Define $R^{r e v}$ as all strings in R, in reversed (backward) character order.
Thus if $R=\{a b c$, def $\}$
then $R^{r e v}=\{c b a$, fed $\}$.
If R is regular, then $\mathrm{R}^{\text {rev }}$ is too.
Why? Build a finite automaton for R. Make sure the automaton has only one final state. Now reverse the direction of all transitions, and interchange the start and final states. What does the modified automation accept?
- If R_{1} and R_{2} are both regular, then
$R_{1} \cap R_{2}$ is also regular. We can show this two different ways:

1. Build two finite automata, one for R1 and one for R2. Pair together states of the two automata to match R1 and R2 simultaneously. The pairedstate automaton accepts only if both R1 and R2 would, so $\mathrm{R} 1 \cap \mathrm{R} 2$ is matched.
2. We can use the fact that R1 $\cap \mathrm{R} 2$ is $=\overline{\overline{\mathrm{R}_{1}}} \cup \overline{\mathrm{R}_{2}}$ We already know union and complementation are regular.

Reading Assignment
 - Read Chapter 4 of Crafting a Compiler

Context Free Grammars

A context- free grammar (CFG) is defined as:

- A finite terminal set V_{t}; these are the tokens produced by the scanner.
- A set of intermediate symbols, called non- terminals, V_{n}.
- A start symbol, a designated nonterminal, that starts all derivations.
- A set of productions (sometimes called rewriting rules) of the form $A \rightarrow X_{1} \ldots X_{m}$
X_{1} to X_{m} may be any combination of terminals and non- terminals.
If $m=0$ we have $A \rightarrow \lambda$ which is a valid production.

Example

> Prog \rightarrow \{ Stmts $\}$
> Stmts \rightarrow Stmts $;$ Stmt
> Stmts \rightarrow Stmt
> Stmt \rightarrow id $=$ Expr
> Expr \rightarrow id
> Expr \rightarrow Expr + id

Often more than one production shares the same left-hand side. Rather than repeat the left hand side, an "or notation" is used:

Prog \rightarrow \{ Stmts \}
Stmts \rightarrow Stmts ; Stmt
Stmt
Stmt \rightarrow id $=$ Expr
Expr \rightarrow id
Expr + id

Derivations

Starting with the start symbol, nonterminals are rewritten using productions until only terminals remain.
Any terminal sequence that can be generated in this manner is syntactically valid.
If a terminal sequence can't be generated using the productions of the grammar it is invalid (has syntax errors).
The set of strings derivable from the start symbol is the language of the grammar (sometimes denoted L(G)).

For example, starting at Prog we generate a terminal sequence, by repeatedly applying productions:
Prog
\{ Stmts \}
\{ Stmts ; Stmt \}
\{Stmt; Stmt \}
\{ id = Expr ; Stmt \}
\{ id = id ; Stmt \}
\{id=id; id=Expr \}
\{id = id ; id = Expr + id \}
\{ id = id ; id = id +id\}

Parse Trees

To illustrate a derivation, we can draw a derivation tree (also called a

 parse tree):

Stmts; Stmt

An abstract syntax tree (AST) shows essential structure but eliminates unnecessary delimiters and intermediate symbols:

If $A \rightarrow \gamma$ is a production then $\alpha A \beta \Rightarrow \alpha \gamma \beta$
where \Rightarrow denotes a one step derivation (using production $A \rightarrow \gamma$).
We extend \Rightarrow to \Rightarrow^{+}(derives in
one or more steps), and \Rightarrow^{*} (derives in zero or more steps).
We can show our earlier derivation as
Prog \Rightarrow
\{ Stmts \} \Rightarrow
\{Stmts ; Stmt \} \Rightarrow
\{Stmt; Stmt \} \Rightarrow
\{id=Expr; Stmt \} \Rightarrow
\{ id = id ; Stmt \} \Rightarrow
\{id=id;id=Expr \} \Rightarrow
\{id = id ; id = Expr + id $\} \Rightarrow$
\{id=id;id=id+id\}
Prog \Rightarrow^{+}\{ id = id ; id = id +id\}

When deriving a token sequence, if more than one non- terminal is present, we have a choice of which to expand next.
We must specify, at each step, which non- terminal is expanded, and what production is applied.
For simplicity we adopt a
convention on what non- terminal is expanded at each step.
We can choose the leftmost possible non- terminal at each step.
A derivation that follows this rule is a leftmost derivation.
If we know a derivation is leftmost, we need only specify what productions are used; the choice of non- terminal is always fixed.

To denote derivations that are leftmost,
we use $\Rightarrow \mathrm{L}, \Rightarrow_{\mathrm{L}}^{+}$, and $\Rightarrow_{\mathrm{L}}^{*}$
The production sequence discovered by a large class of parsers (the top- down parsers) is a leftmost derivation, hence these parsers produce a leftmost parse. Prog $\Rightarrow \mathrm{L}$
\{ Stmts \} $\Rightarrow \mathrm{L}$
\{Stmts ; Stmt \} $\Rightarrow \mathrm{L}$
\{ Stmt ; Stmt \} $\Rightarrow \mathrm{L}$
\{ id = Expr ; Stmt \} $\Rightarrow \mathrm{L}$
\{ id = id ; Stmt \} $\Rightarrow \mathrm{L}$
\{id = id ; id = Expr $\} \Rightarrow$ L
$\{$ id $=$ id $; i d=$ Expr $+i d\} \Rightarrow L$
\{id=id;id=id+id\}
Prog $\Rightarrow{ }_{L}^{+}\{i d=i d ; i d=i d+i d\}$

Rightmost Derivations

A rightmost derivation is an alternative to a leftmost derivation. Now the rightmost non- terminal is always expanded.
This derivation sequence may seem less intuitive given our normal left- to- right bias, but it corresponds to an important class of parsers (the bottom- up parsers, including CUP). As a bottom- up parser discovers the productions used to derive a token sequence, it discovers a rightmost derivation, but in reverse order.
The last production applied in a rightmost derivation is the first that is discovered. The first production used, involving the start symbol, is discovered last.

The sequence of productions recognized by a bottom- up parser is a rightmost parse.
It is the exact reverse of the production sequence that represents a rightmost derivation. For rightmost derivations, we use the notation $\Rightarrow R_{R}, \Rightarrow_{R}^{+}$, and \Rightarrow_{R}^{*} Prog $\Rightarrow{ }_{R}$ \{ Stmts \} $\Rightarrow \mathrm{R}$ \{Stmts; Stmt \} \Rightarrow R \{Stmts ; id = Expr \} \Rightarrow R \{Stmts ; id = Expr + id $\} \Rightarrow R$ \{Stmts ; id = id + id \} $\Rightarrow \mathrm{R}$ \{Stmt ; id = id + id \} \Rightarrow R $\{$ id $=$ Expr ; id $=$ id $+i d\} \Rightarrow R$ $\{$ id $=$ id ; id = id $+i d\}$
Prog $\Rightarrow^{+}\{i d=i d ; i d=i d+i d\}$

You can derive the same set of tokens using leftmost and rightmost derivations; the only difference is the order in which productions are used.

Ambiguous Grammars

Some grammars allow more than one parse tree for the same token sequence. Such grammars are ambiguous. Because compilers use syntactic structure to drive translation, ambiguity is undesirable -it may lead to an unexpected translation.
Consider

$$
\begin{gathered}
E \rightarrow E-E \\
\mid \quad \text { id }
\end{gathered}
$$

When parsing the input $\mathrm{a}-\mathrm{b}-\mathrm{c}$ (where a, b and c are scanned as identifiers) we can build the following two parse trees:

The effect is to parse $\mathrm{a}-\mathrm{b}-\mathrm{c}$ as either ($a-b$)- c or $a-(b-c$). These two groupings are certainly not equivalent.
Ambiguous grammars are usually voided in building compilers; the tools we use, like Yacc and CUP, strongly prefer unambiguous grammars.
To correct this ambiguity, we use

$$
\begin{gathered}
E \rightarrow E- \\
\mid \quad \text { id }
\end{gathered}
$$

Now a-b-c can only be parsed as:

Operator Precedence

Most programming languages have operator precedence rules that state the order in which operators are applied (in the absence of explicit parentheses). Thus in C and Java and CSX, a $+\mathbf{b} * \mathbf{c}$ means compute $\mathbf{b} * \mathbf{c}$, then add in a.
These operators precedence rules can be incorporated directly into a CFG.
Consider

$$
E \rightarrow E+T
$$

\| T
$\mathbf{T} \rightarrow \mathbf{T}$ *
\| P
$P \rightarrow$ id
| (E)

Does $\mathbf{a + b}$ *c mean ($\mathbf{a + b}$)*c or $a+(b * c)$?
The grammar tells us! Look at the derivation tree:

The other grouping can't be obtained unless explicit parentheses are used.
(Why?)

Java CUP

Java CUP is a parser- generation tool, similar to Yacc.
CUP builds a Java parser for LALR(1) grammars from production rules and associated Java code fragments.
When a particular production is recognized, its associated code fragment is executed (typically to build an AST).
CUP generates a Java source file parser.java. It contains a class parser, with a method
Symbol parse()
The symbol returned by the parser is associated with the grammar's start symbol and contains the AST for the whole source program.

The file sym.java is also built for use with a JLex- built scanner (so that both scanner and parser use the same token codes).
If an unrecovered syntax error occurs, Exception() is thrown by the parser.
CUP and Yacc accept exactly the same class of grammars-all LL(1) grammars, plus many useful nonLL(1) grammars.
CUP is called as
java java_cup. Main < file.cup

Java CUP Specifications

Java CUP specifications are of the form:

- Package and import specifications
- User code additions
- Terminal and non- terminal declarations
- A context- free grammar, augmented with Java code fragments

Package and Import Specifications

 You define a package name as:package name ;
You add imports to be used as: import java_cup.runtime.*;

User Code Additions

You may define Java code to be included within the generated parser:
action code \{: /*java code */ :\} This code is placed within the generated action class (which holds user- specified production actions).
parser code \{: /*java code */ :\} This code is placed within the generated parser class.
init with\{: /*java code */ :\} This code is used to initialize the generated parser.
scan with\{: /*java code */ : \} This code is used to tell the generated parser how to get tokens from the scanner.

Terminal and Non-terminal Declarations

You define terminal symbols you will use as:
terminal classname name ${ }_{1}$, name ${ }_{2}, \ldots$ classname is a class used by the scanner for tokens (CSXToken, CSXIdentifierToken, etc.)

You define non- terminal symbols you will use as: non terminal classname name ${ }_{1}$, name ${ }_{2}, \ldots$ classname is the class for the AST node associated with the non- terminal (stmtNode, exprNode, etc.)

Production Rules

Production rules are of the form name ::= name ${ }_{1}$ name ${ }_{2}$... action ; or name ::= name ${ }_{1}$ action $_{1}$ name $_{2}$... | name $_{3}$ name $_{4} \ldots$ action $_{2}$ | ... ;
Names are the names of terminals or non- terminals, as declared earlier.
Actions are Java code fragments, of the form
\{: /*java code */ :\}
The Java object assocated with a symbol (a token or AST node) may be named by adding a :id suffix to a terminal or non- terminal in a rule.

Result names the left- hand side non- terminal.
The Java classes of the symbols are defined in the terminal and non- terminal declaration sections.
For example,
prog ::= LBRACE:l stmts:s RBRACE \{: RESULT =
new csxLiteNode(s,
l.linenum,l.colnum); :\}

This corresponds to the production prog \rightarrow \{ stmts \}
The left brace is named 1 ; the stmts non- terminal is called \mathbf{s}.
In the action code, a new CSXLiteNode is created and assigned to prog. It is constructed from the AST node associated with s. Its line and column
numbers are those given to the left brace, 1 (by the scanner).
To tell CUP what non- terminal to use as the start symbol (prog in our example), we use the directive:
start with prog;

Example

Let's look at the CUP specification for CSX- lite. Recall its CFG is

$$
\begin{aligned}
& \text { program } \rightarrow \text { \{stmts \} } \\
& \text { stmts } \rightarrow \text { stmt stmts } \\
& \mid \lambda \\
& \text { stmt } \rightarrow \text { id }=\text { expr ; } \\
& \text { | if (expr) stmt } \\
& \text { expr } \rightarrow \text { expr }+ \text { id } \\
& \text { | expr - id } \\
& \text { | id }
\end{aligned}
$$

The corresponding CUP specification is:

/***
This Is A Java CUP Specification For CSX-lite, a Small Subset of The CSX Language, Used In Cs536 ***/
/* Preliminaries to set up and use the scanner. */
import java_cup.runtime.*;
parser code \{: public void syntax_error (Symbol cur_token) \{
report_error(
"CSX syntax error at line " + String.valueOf((CSXToken)
cur_token.value).linenum), null); $\}$
: \};
init with \{: : \};
scan with \{:
return Scanner.next_token();
: \};
/* Terminals (tokens returned by the scanner). */
terminal CSXIdentifierToken IDENTIFIER; terminal CSXToken SEMI, LPAREN, RPAREN, ASG, LBRACE, RBRACE;
terminal CSXToken PLUS, MINUS, rw_IF;
/* Non terminals */
non terminal csxLiteNode prog;
non terminal stmtsNode stmts;
non terminal stmtNode stmt;
non terminal exprNode exp;
non terminal nameNode ident;
start with prog;
prog: := LBRACE:l stmts:s RBRACE
\{: RESULT=
new csxLiteNode(s,
l.linenum,l.colnum); : \}
;
stmts: : $=$ stmt:s1 stmts:s2
\{: RESULT= new stmtsNode(s1,s2, s1.linenum, s1.colnum);
: \}

```
|
    {: RESULT= stmtsNode.NULL; : }
;
stmt::= ident:id ASG exp:e SEMI
    {: RESULT=
                        new asgNode(id,e,
                        id.linenum,id.colnum);
    :}
| rw_IF:i LPAREN exp:e RPAREN stmt:s
    {: RESULT=new ifThenNode(e,s,
                        stmtNode.NULL,
                            i.linenum,i.colnum); :}
;
exp::=
    exp:leftval PLUS:Op ident:rightval
    {: RESULT=new binaryOpNode(leftval,
    sym.PLUS, rightval,
            op.linenum,op.colnum); :}
    | exp:leftval MINUS:op ident:rightval
    {: RESULT=new binaryOpNode(leftval,
                                    sym.MINUS,rightval,
                        op.linenum,op.colnum); :}
    | ident:i
    {: RESULT = i; :}
;
```

ident::= IDENTIFIER:i
\{: RESULT = new nameNode (new identNode(i.identifierText, i.linenum,i.colnum), exprNode.NULL, i.linenum,i.colnum); : \} ;
Let's parse

$$
\{\mathbf{a}=\mathbf{b} ;\}
$$

First, a is parsed using
ident::= IDENTIFIER:i
\{: RESULT = new nameNode (
new identNode(i.identifierText,
i.linenum,i.colnum),
exprNode.NULL

$$
\text { i.linenum,i.colnum); :\} }
$$

We build

Next, b is parsed using
ident::= IDENTIFIER:i
\{: RESULT = new nameNode (new identNode(i.identifierText, i.linenum,i.colnum), exprNode.NULL, i.linenum,i.colnum); :\}

We build

Then b's subtree is recognized as an exp:
| ident:i
\{: RESULT = i; :\}
Now the assignment statement is recognized:
stmt::= ident:id ASG exp:e SEMI
\{: RESULT=
new asgNode(id,e,
id.linenum,id.colnum);
: \}
We build

The stmts $\rightarrow \lambda$ production is matched (indicating that there are no more statements in the program).
CUP matches
stmts: : =
\{: RESULT= stmtsNode.NULL; : \}
and we build

nullStmtsNode

Next,
stmts \rightarrow stmt stmts is matched using
stmts: : = stmt:s1 stmts:s2
\{: RESULT=
new stmtsNode(s1,s2, s1.linenum, s1.colnum);
: \}

This builds

As the last step of the parse, the parser matches
program \rightarrow \{ stmts \} using the CUP rule
prog: := LBRACE:l stmts:s RBRACE
\{: RESULT=
new csxLiteNode(s,
l.linenum,l.colnum); : \}
;

The final AST reurned by the parser is

