
CS 536

©
CS 536 Spring 2015 1

Introduction to
Programming Languages

and Compilers
Charles N. Fischer

Lecture 9

•  Midterm Exam #1:
 Monday, November 12,
 5:30 – 7:30 PM
 Covers LL(1) parsing.

Reading Assignment

©
CS 536 Spring 2015 27

2

Read Sections 6.1 to 6.5.1 of
Craf t ing a Compi ler.

How does JavaCup Work?

©
CS 536 Spring 2015 27

3

The main limitation of LL(1) parsing
is that it must predict the correct
production to use when it first starts
to match the production’s righthand
side.

An improvement to this approach is
the LALR(1) parsing method that is
used in JavaCUP (and Yacc and Bison
too).
The LALR(1) parser is bottom- up in
approach. It tracks the portion of a
righthand side already matched as
tokens are scanned. It may not know
immediately which is the correct
production to choose, so it tracks
sets of possible matching
productions.

Configurations

©
CS 536 Spring 2015 27

4

We’ll use the notation

X → A B • C D
to represent the fact that we are
trying to match the production
X → A B C D with A and B
matched so far.

A production with a “•”
somewhere in its righthand side is
called a configuration.
Our goal is to reach a
configuration with the “dot” at the
extreme right:

X → A B C D •
This indicates that an entire
production has just been
matched.

Since we may not know which
production will eventually be fully
matched, we may need to track a
configuration set. A configuration
set is sometimes called a state.

©
CS 536 Spring 2015 27

5

When we predict a production, we
place the “dot” at the beginning of
a production:

X → • A B C D
This indicates that the production
may possibly be matched, but no
symbols have actually yet been
matched.
We may predict a λ- production:

X → λ •

When a λ- production is predicted,
it is immediately matched, since λ
can be matched at any time.

Starting the Parse

©
CS 536 Spring 2015 27

6

At the start of the parse, we know
some production with the start
symbol must be used initially. We
don’t yet know which one, so we
predict them all:

S → • A B C D
S → • e F g
S → • h I

...

Closure

©
CS 536 Spring 2015 27

7

When we encounter a
configuration with the dot to the
left of a non- terminal, we know
we need to try to match that non-
terminal.
Thus in

X → • A B C D
we need to match some
production with A as its left hand
side.
Which production?
We don’t know, so we predict all
possibilities:

A → • P Q R
A → • s T

...

The newly added configurations
may predict other non- terminals,
forcing additional productions to
be included. We continue this
process until no additional
configurations can be added.

©
CS 536 Spring 2015 27

8

This process is called closure (of
the configuration set).

Here is the closure algorithm:
ConfigSet Closure(ConfigSet C)
{ repeat

if (X → a •B d is in C &&
B is a non-terminal)

Add all configurations of
the form B → •g to C)

until (no more configurations
can be added);

return C;
}

Example of Closure

©
CS 536 Spring 2015 27

9

Assume we have the following
grammar:
S → A b

To compute Closure(S → • A b)
we first include all productions
that rewrite A:

A → • C D
Now C productions are included:

C → • D
C → • c

A → C D
C →
C →

D
c

D → d

Finally, the D production is added:

D → • d
The complete configuration set is:

S → • A b
A → • C D
C → • D C
C → • c D
D → • d

This set tells us that if we want to
match an A, we will need to match
a C, and this is done by matching
a c or d token.

©
CS 536 Spring 2015 28

0

Shift Operations

©
CS 536 Spring 2015 28

1

When we match a symbol (a
terminal or non- terminal), we shift
the “dot” past the symbol just
matched. Configurations that don’t
have a dot to the left of the
matched symbol are deleted (since
they didn’t correctly anticipate the
matched symbol).
The GoTo function computes an
updated configuration set after a
symbol is shifted:

ConfigSet GoTo(ConfigSet C,Symbol X)
{ B= φ;
for each configuration f in C { if

if (f is of the form A → α•X δ)
Add A → α X •δ to B;

}
return Closure(B);

}

For example, if the set is

©
CS 536 Spring 2015 28

2

S → A b
A → • C D
C → • D

•

C → • c
D → • d

and X is C, then GoTo returns

A → C • D
D → • d

Reduce Actions

©
CS 536 Spring 2015 28

3

When the dot in a configuration
reaches the rightmost position,
we have matched an entire
righthand side. We are ready to
replace the righthand side
symbols with the lefthand side of
the production. The lefthand side
symbol can now be considered
matched.
If a configuration set can shift a
token and also reduce a
production, we have a potential
shift/reduce error.
If we can reduce more than one
production, we have a potential
reduce/reduce error.
How do we decide whether to do a
shift or reduce? How do we
choose among more than one
reduction?

We examine the next token to see
if it is consistent with the
potential reduce actions.
The simplest way to do this is to
use Follow sets, as we did in LL(1)
parsing.
If we have a configuration

©
CS 536 Spring 2015 28

4

A → α •
we will reduce this production
only if the current token, CT, is in
Follow(A).
This makes sense since if we
reduce α to A, we can’t correctly
match CT if CT can’t follow A.

Shift/Reduce and Reduce/
Reduce Errors

©
CS 536 Spring 2015 28

5

If we have a parse state that
contains the configurations

A → α •

B → β • a γ
and a in Follow(A) then there is an
unresolvable shift/reduce conflict.
This grammar can’t be parsed.
Similarly, if we have a parse state
that contains the configurations

A → α •

B → β •

and Follow(A) ∩ Follow(B) ≠ φ,
then the parser has an
unresolvable reduce/reduce
conflict. This grammar can’t be
parsed.

Building Parse States

©
CS 536 Spring 2015 28

6

All the manipulations needed to
build and complete configuration
sets suggest that parsing may be
slow—configuration sets need to
be updated after each token is
matched.
Fortunately, all the configuration
sets we ever will need can be
computed and tabled in advance,
when a tool like Java Cup builds a
parser.
The idea is simple. We first
compute an initial parse state, s0,
that corresponds to predicting
productions that expand the start
symbol. We then just compute
successor states for each token
that might be scanned. A
complete set of states can be
computed. For typical

programming language
grammars, only a few hundred
states are needed.
Here is the algorithm that builds a
complete set of parse states for a
grammar:

StateSet BuildStates(){
Let s0=Closure({S → •α, S → •β, ...});

C={s0};

while (not all states in C are marked)
{ Choose any unmarked state, s, in C
Mark s;
For each X in

terminals U nonterminals
{ if (GoTo(s,X) is not in C)

Add GoTo(s,X) to C;
}

}
return C;
}

©
CS 536 Spring 2015 28

7

Configuration Sets for CSX-
Lite

©
CS 536 Spring 2015 28

8

State Cofiguration Set

s0 Prog → •{ Stmts } Eof

s1 Prog → { • Stmts } Eof
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s2 Prog → { Stmts •} Eof

s3 Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s4 Stmt → id • = Expr ;

s5 Stmt → if • (Expr) Stmt

©
CS 536 Spring 2015 28

9

State Cofiguration Set

s6 Prog → { Stmts } •Eof

s7 Stmts → Stmt Stmts •

s8 Stmt → id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s9 Stmt → if (• Expr) Stmt
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s10 Prog → { Stmts } Eof •

s11 Stmt → id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

s12 Expr → id •

s13 Stmt → if (Expr •) Stmt
Expr → Expr • + id
Expr → Expr • - id

©
CS 536 Spring 2015 29

0

State Cofiguration Set
s14 Stmt → id = Expr ; •
s15 Expr → Expr + • id

s16 Expr → Expr - • id

s17 Stmt → if (Expr) • Stmt
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s18 Expr → Expr + id •

s19 Expr → Expr - id •

s20 Stmt → if (Expr) Stmt •

Parser Action Table

©
CS 536 Spring 2015 29

1

We will table possible parser
actions based on the current state
(configuration set) and token.
Given configuration set C and
input token T four actions are
possible:
•  Reduce i: The i- th production has

been matched.

•  Shift: Match the current token.

•  Accept: Parse is correct and
complete.

•  Error: A syntax error has been
discovered.

We will let A[C][T] represent the
possible parser actions given
configuration set C and input
token T.
A[C][T] =
{Reduce i | i- th production is A→ α

©
CS 536 Spring 2015 29

2

and A → α • is in C
and T in Follow(A) }

U (If (B → β • T γ is in C)
{Shift} else φ)

This rule simply collects all the
actions that a parser might do
given C and T.
But we want parser actions to be
unique so we require that the
parser action always be unique for
any C and T.

If the parser action isn’t unique,
then we have a shift/reduce error
or reduce/reduce error. The
grammar is then rejected as
unparsable.
If parser actions are always
unique then we will consider a
shift of EOF to be an accept
action.
An empty (or undefined) action
for C and T will signify that token
T is illegal given configuration set
C.
A syntax error will be signaled.

©
CS 536 Spring 2015 29

3

LALR Parser Driver

©
CS 536 Spring 2015 29

4

Given the GoTo and parser action
tables, a Shift/Reduce (LALR)
parser is fairly simple:

void LALRDriver()
{ Push(S0);
while(true){
//Let S = Top state on parse stack
//Let CT = current token to match

switch (A[S][CT]) {
case error:

SyntaxError(CT);return;
case accept:

return;
case shift:

push(GoTo[S][CT]);
CT= Scanner();
break;

case reduce i:
//Let prod i = A→Y1...Ym
pop m states;
//Let S’ = new top state
push(GoTo[S’][A]);
break;

} } }

Action Table for CSX-Lite

©
CS 536 Spring 2015 29

5

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ S

} R3 S R3 R2 R4 R5

if S S R4 S R5

(S

) R8 S R6 R7

id S S S S R4 S S S

= S

+ S R8 S R6 R7

- S R8 S R6 R7

; S R8 R6 R7 R5

eof A

GoTo Table for CSX-Lite

©
CS 536 Spring 2015 29

6

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ 1

} 6

if 5 5 5

(9

) 17

id 4 4 12 12 18 19 4

= 8

+ 15 15

- 16 16

; 14

eof 10

stmts 2 7

stmt 3 3

expr 11 13

©
CS 536 Spring 2015 29

7

Example of LALR(1) Parsing
We’ll again parse
{ a = b + c; } Eof

We start by pushing state 0 on the
parse stack.

Parse
Stack

Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { a = b + c; } Eof

1
0

Prog → { • Stmts } Eof
Stmts → • Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)

Shift a = b + c; } Eof

4
1
0

Stmt → id • = Expr ; = b + c; } Eof

8
4
1
0

Stmt → id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

Shift b + c; } Eof

©
CS 536 Spring 2015 29

8

Parse
Stack

Top State Action Remaining Input

12
8
4
1
0

Expr → id • Reduce 8 + c; } Eof

11
8
4
1
0

Stmt → id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift + c; } Eof

15
11
8
4
1
0

Expr → Expr + • id Shift c; } Eof

©
CS 536 Spring 2015 29

9

Parse
Stack

Top State Action Remaining Input

18
15
11
8
4
1
0

Expr → Expr + id • Reduce 6 ; } Eof

11
8
4
1
0

Stmt →
Expr →
Expr →

id = Expr • ;
Expr • + id
Expr • - id

Shift ; } Eof

14
11
8
4
1
0

Stmt → id = Expr ; • Reduce 4 } Eof

©
CS 536 Spring 2015 30

0

Parse
Stack

Top State Action Remaining Input

3
1
0

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)
Stmt

Reduce 3 } Eof

7
3
1
0

Stmts → Stmt Stmts • Reduce 2 } Eof

2
1
0

Prog → { Stmts •} Eof Shift } Eof

6
2
1
0

Prog → { Stmts } •Eof Accept Eof

Error Detection in LALR
Parsers

©
CS 536 Spring 2015 30

1

In bottom- up, LALR parsers syntax
errors are discovered when a blank
(error) entry is fetched from the
parser action table.
Let’s again trace how the following
illegal CSX- lite program is parsed:

{ b + c = a; } Eof

Parse
Stack

Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { b + c = a; } Eof

©
CS 536 Spring 2015 30

2

Parse
Stack

Top State Action Remaining Input

1
0

Prog → { • Stmts } Eof
Stmts → • Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)

Shift b + c = a; } Eof

4
1
0

Stmt → id • = Expr ; Error
(blank)

+ c = a; } Eof

LALR is More Powerful

©
CS 536 Spring 2015 30

3

Essentially all LL(1) grammars are
LALR(1) plus many more.
Grammar constructs that confuse
LL(1) are readily handled.
•  Common prefixes are no problem.

Since sets of configurations are
tracked, more than one prefix can
be followed. For example, in

after we match an id we have

Stmt →
Stmt →

id • = Expr ;
id • (Args) ;

The next token will tell us which
production to use.

Stmt → id = Expr ;
Stmt → id (Args) ;

•  Left recursion is also not a
problem. Since sets of
configurations are tracked, we can
follow a left- recursive production
and all others it might use. For
example, in

Expr → • Expr + id
Expr → • id

we can first match an id:

Expr → id •

Then the Expr is recognized:

Expr → Expr • + id

The left- recursion is handled!

©
CS 536 Spring 2015 30

4

•  But ambiguity will still block
construction of an LALR parser.
Some shift/reduce or reduce/
reduce conflict must appear. (Since
two or more distinct parses are
possible for some input).
Consider our original productions
for if- then and if- then- else
statements:

©
CS 536 Spring 2015 30

5

Stmt → if (Expr) Stmt •
Stmt → if (Expr) Stmt • else Stmt

Since else can follow Stmt, we
have an unresolvable shift/reduce
conflict.

Grammar Engineering

©
CS 536 Spring 2015 30

6

Though LALR grammars are very
general and inclusive, sometimes
a reasonable set of productions is
rejected due to shift/reduce or
reduce/reduce conflicts.
In such cases, the grammar may
need to be “engineered” to allow
the parser to operate.
A good example of this is the
definition of MemberDecls in CSX.
A straightforward definition is

MemberDecls → FieldDecls MethodDecls
FieldDecls → FieldDecl FieldDecls
FieldDecls → λ
MethodDecls → MethodDecl
MethodDecls → λ
FieldDecl → int id ;
MethodDecl → int id () ; Body

MethodDecls

When we predict MemberDecls we
get:

MemberDecls → • FieldDecls MethodDecls

©
CS 536 Spring 2015 30

7

FieldDecls → • FieldDecl
FieldDecls → λ•
FieldDecl → • int id ;

FieldDecls

Now int follows FieldDecls since
MethodDecls ⇒+ int ...
Thus an unresolvable shift/reduce
conflict exists.
The problem is that int is
derivable from both FieldDecls
and MethodDecls, so when we see
an int, we can’t tell which way to
parse it (and FieldDecls → λ
requires we make an immediate
decision!).

If we rewrite the grammar so that
we can delay deciding from where
the int was generated, a valid
LALR parser can be built:

MemberDecls → FieldDecl MemberDecls
MemberDecls → MethodDecls

©
CS 536 Spring 2015 30

8

MethodDecls → MethodDecl
MethodDecls → λ
FieldDecl → int id ;
MethodDecl → int id () ; Body

MethodDecls

When MemberDecls is predicted
we have
MemberDecls → • FieldDecl MemberDecls
MemberDecls → • MethodDecls
MethodDecls → •MethodDecl
MethodDecls → λ •
FieldDecl → • int id ;
MethodDecl → • int id () ; Body

MethodDecls

Now Follow(MethodDecls) =
Follow(MemberDecls) = “}”, so we
have no shift/reduce conflict.
After int id is matched, the next
token (a “;” or a “(“) will tell us
whether a FieldDecl or a
MethodDecl is being matched.

©
CS 536 Spring 2015 30

9

Properties of LL and LALR
Parsers

©
CS 536 Spring 2015 31

0

•  Each prediction or reduce action is
guaranteed correct. Hence the entire
parse (built from LL predictions or
LALR reductions) must be correct.

This follows from the fact that LL
parsers allow only one valid prediction
per step. Similarly, an LALR parser
never skips a reduction if it is
consistent with the current token (and
all possible reductions are tracked).

•  LL and LALR parsers detect an syntax
error as soon as the first invalid token
is seen.

Neither parser can match an invalid
program prefix. If a token is matched
it must be part of a valid program
prefix. In fact, the prediction made or
the stacked configuration sets show a
possible derivation of the token
accepted so far.

•  All LL and LALR grammars are

unambiguous.

LL predictions are always unique and
LALR shift/reduce or reduce/reduce
conflicts are disallowed. Hence only
one valid derivation of any token
sequence is possible.

©
CS 536 Spring 2015 31

1

•  All LL and LALR parsers require only
linear time and space (in terms of the
number of tokens parsed).

The parsers do only fixed work per
node of the concrete parse tree, and
the size of this tree is linear in terms
of the number of leaves in it (even with
λ- productions included!).

©
CS 536 Spring 2015 31

2

Reading Assignment

©
CS 536 Spring 2015 31

3

Read Chapter 8 of Craf t ing a
Compi ler.

Symbol Tables in CSX

©
CS 536 Spring 2015 31

4

CSX is designed to make symbol
tables easy to create and use.
There are three places where a
new scope is opened:
•  In the class that represents the

program text. The scope is opened
as soon as we begin processing the
classNode (that roots the entire
program). The scope stays open
until the entire class (the whole
program) is processed.

•  When a methodDeclNode is
processed. The name of the
method is entered in the top- level
(global) symbol table. Declarations
of parameters and locals are placed
in the method’s symbol table. A
method’s symbol table is closed
after all the statements in its body
are type checked.

•  When a blockNode is processed.
Locals are placed in the block’s
symbol table. A block’s symbol
table is closed after all the
statements in its body are type
checked.

©
CS 536 Spring 2015 31

5

CSX Limits
Forward References

©
CS 536 Spring 2015 31

6

Except for method references, we
can do type-checking in one pass
over the AST. As declarations are
processed, their identifiers are
added to the current (innermost)
symbol table. When a use of an
identifier occurs, we do an ordinary
block- structured lookup, always
using the innermost declaration
found. Hence in

the first declaration initializes i to
the nearest non- local definition of
j.
The second declaration initializes
j to the current (local) definition
of i.

int i = j;
int j = i;

Forward References to
Methods Require Two Passes

©
CS 536 Spring 2015 31

7

Since forward references to
methods are allowed, we process
method declarations in two
passes.
First we walk the methodDecls
AST to establish symbol tables
entries for all method
declarations. No calls (lookups)
are handled in this passes.
On a second pass, all calls are
processed, using the symbol
table entries built on the first
pass.
Forward references make type
checking a bit trickier, as we may
reference a declaration not yet
fully processed.
In Java, forward references to
fields within a class are allowed.
Thus in

class

©
CS 536 Spring 2015 31

8

Duh {

}
a Java compiler must recognize
that the initialization of i is to the
j field and that the j declaration
is incomplete (Java forbids
uninitialized fields or variables).
Forward references allow
methods to be mutually recursive.
That is, we can let method a call
b, while b calls a.

int i = j;
int j = i;

Incomplete Declarations

©
CS 536 Spring 2015 31

9

Some languages, like C+ + , allow
incomplete declarations.

First, part of a declaration (usually the
header of a procedure or method) is
presented.

Later, the declaration is
completed. In C++:
class C

{ int I;

public:
int f();

};
int C::f(){return i+1;}

Incomplete declarations solve
potential forward reference
problems, as you can declare
method headers first, and bodies
that use the headers later.
Headers support abstraction and
separate compilation too.
In C and C+ + , it is common to
use a #include statement to add
the headers (but not bodies) of
external or library routines you
wish to use.
C+ + also allows you to declare a
class by giving its fields and
method headers first, with the
bodies of the methods declared
later. This is good for users of the
class, who don’t always want to
see implementation details.

©
CS 536 Spring 2015 32

0

Classes, Structs and Records

©
CS 536 Spring 2015 32

1

The fields and methods declared
within a class, struct or record are
stored within a individual symbol
table allocated for its
declarations.
Member names must be unique
within the class, record or struct,
but may clash with other visible
declarations. This is allowed
because member names are
qualified by the object they occur
in.
Hence the reference x.a means
look up x, using normal scoping
rules. Object x should have a type
that includes local fields. The type
of x will include a pointer to the
symbol table containing the field
declarations. Field a is looked up
in that symbol table.

Chains of field references are no
problem.
For example, in Java
System.out.println
is commonly used.
System is looked up and found to
be a class in one of the standard
Java packages (java.lang). Class
System has a static member out
(of type PrintStream) and
PrintStream has a member
println.

©
CS 536 Spring 2015 32

2

Internal and External Field
Access

©
CS 536 Spring 2015 32

3

Within a class, members may be
accessed without qualification.
Thus in
class C {

static int i;
{void subr()

int j = i;
}

}

field i is accessed like an ordinary
non- local variable.
To implement this, we can treat
member declarations like an
ordinary scope in a block-
structured symbol table.

When the class definition ends, its
symbol table is popped and
members are referenced through
the symbol table entry for the
class name.
This means a simple reference to
i will no longer work, but C.i will
be valid.

In languages like C+ + that allow
incomplete declarations, symbol
table references need extra care.
In

class C
{ int i;
public:
int f();
};

©
CS 536 Spring 2015 32

4

int C::f(){return i+1;}

when the definition of f() is
completed, we must restore C’s
field definitions as a containing
scope so that the reference to i in
i+1 is properly compiled.

©
CS 536 Spring 2015 32

5

Public and Private Access

©
CS 536 Spring 2015 32

6

C+ + and Java (and most other
object- oriented languages) allow
members of a class to be marked
public or private.
Within a class the distinction is
ignored; all members may be
accessed.
Outside of the class, when a
qualified access like C.i is
required, only public members
can be accessed.
This means lookup of class
members is a two- step process.
First the member name is looked
up in the symbol table of the
class. Then, the public/private
qualifier is checked. Access to
private members from outside
the class generates an error
message.

C+ + and Java also provide a
protected qualifier that allows
access from subclasses of the
class containing the member
definition.
When a subclass is defined, it
“inherits” the member definitions
of its ancestor classes. Local
definitions may hide inherited
definitions. Moreover, inherited
member definitions must be
public or protected; private
definitions may not be directly
accessed (though they are still
inherited and may be indirectly
accessed through other inherited
definitions).
Java also allows “blank” access
qualifiers which allow public
access by all classes within a
package (a collection of classes).

©
CS 536 Spring 2015 32

7

Packages and Imports

©
CS 536 Spring 2015 32

8

Java allows packages which group
class and interface definitions into
named units.
A package requires a symbol table
to access members. Thus a
reference
java.util.Vector
locates the package java.util
(typically using a CLASSPATH) and
looks up Vector within it.
Java supports import statements
that modify symbol table lookup
rules.
A single class import, like
import java.util.Vector;
brings the name Vector into the
current symbol table (unless a

definition of Vector is already
present).
An “import on demand” like
import java.util.*;
will lookup identifiers in the
named packages after explicit
user declarations have been
checked.

©
CS 536 Spring 2015 32

9

Classfiles and Object Files

©
CS 536 Spring 2015 33

0

Class files (“.class” files, produced
by Java compilers) and object files
(“.o” files, produced by C and C+ +
compilers) contain internal
symbol tables.
When a field or method of a Java
class is accessed, the JVM uses
the classfile’s internal symbol
table to access the symbol’s value
and verify that type rules are
respected.
When a C or C+ + object file is
linked, the object file’s internal
symbol table is used to determine
what external names are
referenced, and what internally
defined names will be exported.

C, C+ + and Java all allow users to
request that a more complete
symbol table be generated for
debugging purposes. This makes
internal names (like local variable)
visible so that a debugger can
display source level information
while debugging.

©
CS 536 Spring 2015 33

1

Overloading

©
CS 536 Spring 2015 33

2

A number of programming
languages, including CSX, Java
and C+ + , allow method and
subprogram names to be
overloaded.
This means several methods or
subprograms may share the same
name, as long as they differ in the
number or types of parameters they
accept. For example,
class C
{int x;

public static int sum(int v1,
int v2) {

v2;return v1 +
}
public int sum(int

return x + v3;
v3) {

}
}

For overloaded identifiers the
symbol table must return a list of
valid definitions of the identifier.
Semantic analysis (type checking)
then decides which definition to
use.

©
CS 536 Spring 2015 33

3

In the above example, while
checking
(new C()).sum(10);
both definitions of sum are returned
when it is looked up. Since one
argument is provided, the
definition that uses one parameter
is selected and checked.
A few languages (like Ada) allow
overloading to be disambiguated on
the basis of a method’s result type.
Algorithms that do this analysis are
known, but are fairly complex.

Overloaded Operators

©
CS 536 Spring 2015 33

4

A few languages, like C+ + , allow
operators to be overloaded.
This means users may add new
definitions for existing operators,
though they may not create new
operators or alter existing
precedence and associativity rules.
(Such changes would force changes
to the scanner or parser.)
For example,

Class complex{
 float re, im;
complex operator+(complex d)

{ complex ans;

ans.re
ans.im
return

= d.re+re;
= d.im+im;
ans;

} }
complex c,d; c=c+d;

During type checking of an
operator, all visible definitions of
the operator (including
predefined definitions) are
gathered and examined.
Only one definition should
successfully pass type checks.
Thus in the above example, there
may be many definitions of +, but
only one is defined to take
complex operands.

©
CS 536 Spring 2015 33

5

Contextual Resolution

©
CS 536 Spring 2015 33

6

Overloading allows multiple
definitions of the same kind of
object (method, procedure or
operator) to co- exist.
Programming languages also
sometimes allow reuse of the same
name in defining different kinds of
objects. Resolution is by context of
use.

For example, in Java, a class name
may be used for both the class and
its constructor. Hence we see
C cvar = new C(10);

In Pascal, the name of a function is
also used for its return value.

Java allows rather extensive reuse of
an identifier, with the same
identifier potentially denoting a
class (type), a class constructor, a

package name, a method and a
field.
For example,
Class C{

double v;

©
CS 536 Spring 2015 33

7

C(double f) {v=f;}

}
class D {
 int C;

double

C cval =

C() {return 1.0;}
new C(C+C());

}

At type- checking time we
examine all potential definitions
and use that definition that is
consistent with the context of
use. Hence new C() must be a
constructor, +C() must be a
function call, etc.

Allowing multiple definitions to
co- exist certainly makes type
checking more complicated than
in other languages.
Whether such reuse benefits
programmers is unclear; it
certainly violates Java’s “keep it
simple” philosophy.
In CSX we allow overloading of
methods (same name, different
parameter combinations).
CSX also allows a label to use
the same name as any other
identifier.

©
CS 536 Spring 2015 33

8

