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Lecture 9 



•  Midterm Exam #1: 
 Monday, November 12, 
 5:30 – 7:30 PM 
 Covers  LL(1) parsing. 



Reading Assignment 
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Read Sections 6.1 to 6.5.1 of 
Craf t ing  a Compi ler. 



How does JavaCup Work? 
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The main limitation of LL(1) parsing 
is that it must predict the correct 
production to use when it first starts 
to match the production’s righthand 
side. 

An improvement to this approach is 
the LALR(1) parsing method that is 
used in JavaCUP (and Yacc and Bison 
too). 
The LALR(1) parser is bottom- up in 
approach. It tracks the portion of a 
righthand side already matched as 
tokens are scanned. It may not know 
immediately which is the correct 
production to choose, so it tracks 
sets of possible matching 
productions. 



Configurations 
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We’ll use the notation 

X → A B • C D 
to represent the fact that we are 
trying to match the production 
X → A B C D with A and B 
matched so far. 

A production with a “•” 
somewhere in its righthand side is 
called a configuration. 
Our goal is to reach a 
configuration with the “dot” at the 
extreme right: 

X → A B C D •
This indicates that an entire 
production has just been 
matched. 



Since we may not know which 
production will eventually be fully 
matched, we may need to track a 
configuration set. A configuration 
set is sometimes called a state. 
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When we predict a production, we 
place the “dot” at the beginning of 
a production: 

X →  • A B C D 
This indicates that the production 
may possibly be matched, but no 
symbols have actually yet been 
matched. 
We may predict a λ- production: 

X →  λ •

When a λ- production is predicted, 
it is immediately matched, since λ 
can be matched at any time. 



Starting the Parse 
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At the start of the parse, we know 
some production with the start 
symbol must be used initially. We 
don’t yet know which one, so we 
predict them all: 

S → • A B C D 
S → • e F g 
S → • h I 

... 



Closure 
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When we encounter a 
configuration with the dot to the 
left of a non- terminal, we know 
we need to try to match that non- 
terminal. 
Thus in 

X → • A B C D 
we need to match some 
production with A as its left hand 
side. 
Which production? 
We don’t know, so we predict all 
possibilities: 

A → • P Q R 
A → • s T 

... 



The newly added configurations 
may predict other non- terminals, 
forcing additional productions to 
be included. We continue this 
process until no additional 
configurations can be added. 
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This process is called closure (of 
the configuration set). 

Here is the closure algorithm: 
ConfigSet Closure(ConfigSet C)
{ repeat

if (X → a •B d is in C &&
B is a non-terminal) 

Add all configurations of
the form B → •g to C)

until (no more configurations
can be added);

return C;
}



Example of Closure 
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Assume we have the following 
grammar: 
S → A  b 

To compute Closure(S → • A  b) 
we first include all productions 
that rewrite A: 

A → • C  D 
Now C productions are included: 

C → • D 
C → • c 

A → C D 
C →
C →

D 
c 

D → d 



Finally, the D production is added: 

D →  • d 
The complete configuration set is: 

S → • A  b 
A →  • C  D 
C → • D C       
C → • c D 
D → • d 

This set tells us that if we want to 
match an A, we will need to match 
a C, and this is done by matching 
a c or d token. 
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Shift Operations 
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When we match a symbol (a 
terminal or non- terminal), we shift 
the “dot” past the symbol just 
matched. Configurations that don’t 
have a dot to the left of the 
matched symbol are deleted (since 
they didn’t correctly anticipate the 
matched symbol). 
The GoTo function computes an 
updated configuration set after a 
symbol is shifted: 

 
ConfigSet GoTo(ConfigSet C,Symbol X)
{ B= φ; 
for each configuration f in C {  if 

if (f is of the form  A →  α•X δ) 
Add A →  α X •δ to B;

}
return Closure(B);

}



For example, if the set  is 
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S →      A  b 
A →   • C  D 
C →  • D 

•

C → • c 
D → • d 

and X is C, then GoTo returns 

A →  C • D 
D → • d 



Reduce Actions 
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When the dot in a configuration 
reaches the rightmost position, 
we have matched an entire 
righthand side. We are ready to 
replace the righthand side 
symbols with the lefthand side of 
the production. The lefthand side 
symbol can now be considered 
matched. 
If a configuration set can shift a 
token and also reduce a 
production, we have a potential 
shift/reduce error. 
If we can reduce more than one 
production, we have a potential 
reduce/reduce error. 
How do we decide whether to do a 
shift or reduce? How do we 
choose among more than one 
reduction? 



We examine the next token to see 
if it is consistent with the 
potential reduce actions. 
The simplest way to do this is to 
use Follow sets, as we did in LL(1) 
parsing. 
If we have a configuration 
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A → α •
we will reduce this production 
only if the current token, CT, is in 
Follow(A). 
This makes sense since if we 
reduce α to A, we can’t correctly 
match CT if CT can’t follow A. 



Shift/Reduce and Reduce/ 
Reduce Errors 

© 
CS 536  Spring 2015 28

5 

If we have a parse state that 
contains the configurations 

A → α •

B → β • a γ
and a in Follow(A) then there is an 
unresolvable shift/reduce conflict. 
This grammar can’t be parsed. 
Similarly, if we have a parse state 
that contains the configurations 

A → α •

B → β •

and Follow(A) ∩ Follow(B) ≠ φ, 
then the parser has an 
unresolvable reduce/reduce 
conflict. This grammar can’t be 
parsed. 



Building Parse States 
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All the manipulations needed to 
build and complete configuration 
sets suggest that parsing may be 
slow—configuration sets need to 
be updated after each token is 
matched. 
Fortunately, all the configuration 
sets we ever will need can be 
computed and tabled in advance, 
when a tool like Java Cup builds a 
parser. 
The idea is simple. We first 
compute an initial parse state, s0, 
that corresponds to predicting 
productions that expand the start 
symbol. We then just compute 
successor states for each token 
that might be scanned. A 
complete set of states can be 
computed. For typical 



programming language 
grammars, only a few hundred 
states are needed. 
Here is the algorithm that builds a 
complete set of parse states for a 
grammar: 

 
StateSet BuildStates(){
Let s0=Closure({S → •α,  S → •β, ...}); 

C={s0};

while (not all states in C are marked)
{ Choose any unmarked state, s, in C 
Mark s;
For each X in

terminals U nonterminals 
{ if (GoTo(s,X) is not in C)

Add GoTo(s,X) to C;
}

}
return C;
}
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Configuration Sets for CSX- 
Lite 
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State Cofiguration Set 

s0 Prog → •{ Stmts } Eof 

s1 Prog → { • Stmts } Eof 
Stmts → •Stmt  Stmts 
Stmts  →  λ •
Stmt → • id  =  Expr  ; 
Stmt → • if  ( Expr ) Stmt 

s2 Prog → { Stmts •} Eof 

s3 Stmts → Stmt • Stmts 
Stmts → •Stmt  Stmts 
Stmts  →  λ •
Stmt → • id  =  Expr  ; 
Stmt → • if  ( Expr ) Stmt 

s4 Stmt →  id • =  Expr  ; 

s5 Stmt →  if  • ( Expr ) Stmt 
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State Cofiguration Set 

s6 Prog → { Stmts } •Eof 

s7 Stmts → Stmt  Stmts •

s8 Stmt →  id  = • Expr  ; 
Expr  → • Expr  +  id 
Expr  → • Expr  -  id 
Expr  → • id 

s9 Stmt →  if  ( • Expr ) Stmt 
Expr  → • Expr  +  id  
Expr  → • Expr  -  id   
Expr  → • id 

s10 Prog → { Stmts } Eof •

s11 Stmt →  id  =  Expr • ; 
Expr  →  Expr • +  id 
Expr  →  Expr • -  id 

s12 Expr  →  id •

s13 Stmt →  if  (  Expr •)  Stmt 
Expr  →  Expr • +  id   
Expr  →  Expr • -  id 
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State Cofiguration Set 
s14 Stmt →  id  =  Expr  ; •
s15 Expr  →  Expr  +  • id 

s16 Expr  →  Expr  -  • id 

s17 Stmt →  if  (  Expr ) • Stmt 
Stmt → • id  =  Expr  ; 
Stmt → • if  ( Expr ) Stmt 

s18 Expr  →  Expr  +  id •

s19 Expr  →  Expr  -  id •

s20 Stmt →  if  (  Expr )  Stmt •



Parser Action Table 
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We will table possible parser 
actions based on the current state 
(configuration set) and token. 
Given configuration set C and 
input token T four actions are 
possible: 
•  Reduce i: The i- th production has 

been matched. 

•  Shift: Match the current token. 

•  Accept: Parse is correct and 
complete. 

•  Error: A syntax error has been 
discovered. 



We will let A[C][T] represent the 
possible parser actions given 
configuration set C and input 
token T. 
A[C][T] = 
{Reduce i | i- th production is A→ α
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and A → α • is in C 
and T in Follow(A) } 

U (If  (B → β • T γ is in C) 
{Shift} else φ) 

 

This rule simply collects all the 
actions that a parser might do 
given C and T. 
But we want parser actions to be 
unique so we require that the 
parser action always be unique for 
any C and T. 



If the parser action isn’t unique, 
then we have a shift/reduce error 
or reduce/reduce error. The 
grammar is then rejected as 
unparsable. 
If parser actions are always 
unique then we will consider a 
shift of EOF to be an accept 
action. 
An empty (or undefined) action 
for C and T will signify that token 
T is illegal given configuration set 
C. 
A syntax error will be signaled. 
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LALR Parser Driver 
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Given the GoTo and parser action 
tables, a Shift/Reduce (LALR) 
parser is fairly simple: 
 
void LALRDriver()
{ Push(S0); 
while(true){
//Let S = Top state on parse stack
//Let CT = current token to match 

switch (A[S][CT]) {
case error:

SyntaxError(CT);return; 
case accept:

return;
case shift: 

push(GoTo[S][CT]); 
CT= Scanner(); 
break;

case reduce i:
//Let prod i = A→Y1...Ym
pop m states;
//Let S’ = new top state 
push(GoTo[S’][A]); 
break;

} } }



Action Table for CSX-Lite 
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0 1 2 3 4 5 6 7 8 9 1 
0 

1 
1 

1 
2 

1 
3 

1 
4 

1 
5 

1 
6 

1 
7 

1 
8 

1 
9 

2 
0 

{ S 

} R3 S R3 R2 R4 R5 

if S S R4 S R5 

( S 

) R8 S R6 R7 

id S S S S R4 S S S 

= S 

+ S R8 S R6 R7 

- S R8 S R6 R7 

; S R8 R6 R7 R5 

eof A 



GoTo Table for CSX-Lite 
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0 1 2 3 4 5 6 7 8 9 1 
0 

1 
1 

1 
2 

1 
3 

1 
4 

1 
5 

1 
6 

1 
7 

1 
8 

1 
9 

2 
0 

{ 1 

} 6 

if 5 5 5 

( 9 

) 17 

id 4 4 12 12 18 19 4 

= 8 

+ 15 15 

- 16 16 

; 14 

eof 10 

stmts 2 7 

stmt 3 3 

expr 11 13 
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Example of LALR(1) Parsing 
We’ll again parse 
{ a = b + c; } Eof

We start by pushing state 0 on the 
parse stack. 

Parse 
Stack 

Top State Action Remaining Input 

0 Prog → •{ Stmts } Eof Shift { a = b + c; } Eof

1
0

Prog → { • Stmts } Eof 
Stmts → • Stmt  Stmts 
Stmts  →  λ •
Stmt → • id  =  Expr  ; 
Stmt → • if  ( Expr ) 

Shift a = b + c; } Eof

4
1
0

Stmt →  id • =  Expr  ; = b + c; } Eof

8
4
1
0

Stmt →  id  = • Expr  ; 
Expr  → • Expr  +  id 
Expr  → • Expr  -  id 
Expr  → • id 

Shift b + c; } Eof
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Parse 
Stack 

Top State Action Remaining Input 

12
8
4
1
0

Expr  →  id • Reduce 8 + c; } Eof

11
8
4
1
0

Stmt →  id  =  Expr • ; 
Expr  →  Expr • +  id 
Expr  →  Expr • -  id 

Shift + c; } Eof

15
11
8
4
1
0

Expr  →  Expr  +  • id Shift c; } Eof
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Parse 
Stack 

Top State Action Remaining Input 

18
15
11
8
4
1
0

Expr  → Expr  +  id • Reduce 6 ; } Eof

11
8
4
1
0

Stmt → 
Expr  → 
Expr  →

id  =  Expr • ; 
Expr • +  id 
Expr • -  id 

Shift ; } Eof

14
11
8
4
1
0

Stmt → id  =  Expr  ; • Reduce 4 } Eof
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Parse 
Stack 

Top State Action Remaining Input 

3
1
0

Stmts → Stmt • Stmts 
Stmts → •Stmt  Stmts 
Stmts  →  λ •
Stmt → • id  =  Expr  ; 
Stmt → • if  ( Expr ) 
Stmt 

Reduce 3 } Eof

7
3
1
0

Stmts → Stmt  Stmts • Reduce 2 } Eof

2
1
0

Prog → { Stmts •} Eof Shift } Eof

6
2
1
0

Prog → { Stmts } •Eof Accept Eof



Error Detection in LALR 
Parsers 
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In bottom- up, LALR parsers syntax 
errors are discovered when a blank 
(error) entry is fetched from the 
parser action table. 
Let’s again trace how the following 
illegal CSX- lite program is parsed: 

{ b + c = a; } Eof

Parse 
Stack 

Top State Action Remaining Input 

0 Prog → •{ Stmts } Eof Shift { b + c = a; } Eof
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Parse 
Stack 

Top State Action Remaining Input 

1
0

Prog → { • Stmts } Eof 
Stmts → • Stmt  Stmts 
Stmts  →  λ •
Stmt → • id  =  Expr  ; 
Stmt → • if  ( Expr ) 

Shift b + c = a; } Eof

4
1
0

Stmt → id • = Expr ; Error 
(blank) 

+ c = a; } Eof



LALR is More Powerful 
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Essentially all LL(1) grammars are 
LALR(1) plus many more. 
Grammar constructs that confuse 
LL(1) are readily handled. 
•  Common prefixes are no problem. 

Since sets of configurations are 
tracked, more than one prefix can 
be followed. For example, in 

after we match an id we have 

Stmt →
Stmt →

id • =  Expr  ; 
id • ( Args )   ; 

The next token will tell us which 
production to use. 

Stmt → id =  Expr  ; 
Stmt → id ( Args )  ; 



•  Left recursion is also not a 
problem. Since sets of 
configurations are tracked, we can 
follow a left- recursive production 
and all others it might use. For 
example, in 

 
Expr → • Expr  + id 
Expr → • id 

we can first match an id: 
 

Expr → id •
 

Then the Expr is recognized: 

Expr → Expr • + id 
 

The left- recursion is handled! 
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•  But ambiguity will still block 
construction of an LALR parser. 
Some shift/reduce or reduce/ 
reduce conflict must appear. (Since 
two or more distinct parses are 
possible for some input). 
Consider our original productions 
for if- then and if- then- else 
statements: 
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Stmt → if ( Expr ) Stmt •
Stmt → if ( Expr ) Stmt  • else Stmt 

Since else can follow Stmt, we 
have an unresolvable shift/reduce 
conflict. 



Grammar Engineering 
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Though LALR grammars are very 
general and inclusive, sometimes 
a reasonable set of productions is 
rejected due to shift/reduce or 
reduce/reduce conflicts. 
In such cases, the grammar may 
need to be “engineered” to allow 
the parser to operate. 
A good example of this is the 
definition of MemberDecls in CSX. 
A straightforward definition is 

MemberDecls → FieldDecls MethodDecls 
FieldDecls → FieldDecl  FieldDecls 
FieldDecls → λ
MethodDecls →  MethodDecl 
MethodDecls → λ
FieldDecl → int id ; 
MethodDecl → int id ( ) ; Body 

MethodDecls 



When we predict MemberDecls we 
get: 

MemberDecls → • FieldDecls MethodDecls 
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FieldDecls → • FieldDecl 
FieldDecls → λ• 
FieldDecl → • int  id ; 

FieldDecls 

Now int follows FieldDecls since 
MethodDecls ⇒+ int ... 
Thus an unresolvable shift/reduce 
conflict exists. 
The problem is that int is 
derivable from both FieldDecls 
and MethodDecls, so when we see 
an int, we can’t tell which way to 
parse it (and FieldDecls → λ 
requires we make an immediate 
decision!). 



If we rewrite the grammar so that 
we can delay deciding from where 
the int was generated, a valid 
LALR parser can be built: 

MemberDecls → FieldDecl  MemberDecls 
MemberDecls → MethodDecls 
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MethodDecls →  MethodDecl 
MethodDecls → λ
FieldDecl → int id ; 
MethodDecl → int id ( ) ; Body 

MethodDecls 

When MemberDecls is predicted 
we have 
MemberDecls → • FieldDecl  MemberDecls 
MemberDecls → • MethodDecls 
MethodDecls → •MethodDecl 
MethodDecls → λ • 
FieldDecl → • int id ; 
MethodDecl → • int id ( ) ; Body 

MethodDecls 



Now Follow(MethodDecls) = 
Follow(MemberDecls) =  “}”, so we 
have no shift/reduce conflict. 
After int id is matched, the next 
token (a “;” or a “(“) will tell us 
whether a FieldDecl or a 
MethodDecl is being matched. 
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Properties of LL and LALR 
Parsers 
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•  Each prediction or reduce action is 
guaranteed correct. Hence the entire 
parse (built from LL predictions or 
LALR reductions) must be correct. 

 
This follows from the fact that LL 
parsers allow only one valid prediction 
per step. Similarly, an LALR parser 
never skips a reduction if it is 
consistent with the current token (and 
all possible reductions are tracked). 



•  LL and LALR parsers detect an syntax 
error as soon as the first invalid token 
is seen. 

Neither parser can match an invalid 
program prefix. If a token is matched 
it must be part of a valid program 
prefix. In fact, the prediction made or 
the stacked configuration sets show a 
possible derivation of the token 
accepted so far. 

 
•  All LL and LALR grammars are 

unambiguous. 
 

LL predictions are always unique and 
LALR shift/reduce or reduce/reduce 
conflicts are disallowed. Hence only 
one valid derivation of any token 
sequence is possible. 
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•  All LL and LALR parsers require only 
linear time and space (in terms of the 
number of tokens parsed). 

 
The parsers do only fixed work per 
node of the concrete parse tree, and 
the size of this tree is linear in terms 
of the number of leaves in it (even with 
λ- productions included!). 
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Reading Assignment 
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Read Chapter 8 of Craf t ing  a 
Compi ler. 



Symbol Tables in CSX 
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CSX is designed to make symbol 
tables easy to create and use. 
There are three places where a 
new scope is opened: 
•  In the class that represents the 

program text. The scope is opened 
as soon as we begin processing the 
classNode (that roots the entire 
program). The scope stays open 
until the entire class (the whole 
program) is processed. 

•  When a methodDeclNode is 
processed. The name of the 
method is entered in the top- level 
(global) symbol table. Declarations 
of parameters and locals are placed 
in the method’s symbol table. A 
method’s symbol table is closed 
after all the statements in its body 
are type checked. 



•  When a blockNode is processed. 
Locals are placed in the block’s 
symbol table. A block’s symbol 
table is closed after all the 
statements in its body are type 
checked. 
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CSX Limits  
Forward References 
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Except for method references, we 
can do type-checking in one pass 
over the AST. As declarations are 
processed, their identifiers are 
added to the current (innermost) 
symbol table. When a use of an 
identifier occurs, we do an ordinary 
block- structured lookup, always 
using the innermost declaration 
found. Hence in 

the first declaration initializes i to 
the nearest non- local definition of 
j. 
The second declaration initializes 
j to the current (local) definition 
of i. 

int i = j;
int j = i;



Forward References to 
Methods Require Two Passes 
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Since forward references to 
methods are allowed, we process 
method declarations in two 
passes. 
First we walk the methodDecls 
AST to establish symbol tables 
entries for all method 
declarations. No calls (lookups) 
are handled in this passes. 
On a second pass, all calls are 
processed, using the symbol 
table entries built on the first 
pass. 
Forward references make type 
checking a bit trickier, as we may 
reference a declaration not yet 
fully processed. 
In Java, forward references to 
fields within a class are allowed. 
Thus in 



class
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Duh {

}
a Java compiler must recognize 
that the initialization of i is to the 
j field and that the j declaration 
is incomplete (Java forbids 
uninitialized fields or variables). 
Forward references allow 
methods to be mutually recursive. 
That is, we can let method a call 
b, while b calls a. 

int i = j;
int j = i;



Incomplete Declarations 
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Some languages, like C+ + , allow 
incomplete declarations. 

First, part of a declaration (usually the 
header of a procedure or method) is 
presented. 

Later, the declaration is 
completed. In C++: 
class C 

{ int I; 

public: 
int f();

};
int C::f(){return i+1;}



Incomplete declarations solve 
potential forward reference 
problems, as you can declare 
method headers first, and bodies 
that use the headers later. 
Headers support abstraction and 
separate compilation too. 
In C and C+ + , it is common to 
use a #include statement to add 
the headers (but not bodies) of 
external or library routines you 
wish to use. 
C+ +  also allows you to declare a 
class by giving its fields and 
method headers first, with the 
bodies of the methods declared 
later. This is good for users of the 
class, who don’t always want to 
see implementation details. 
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Classes, Structs and Records 
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The fields and methods declared 
within a class, struct or record are 
stored within a individual symbol 
table allocated for its 
declarations. 
Member names must be unique 
within the class, record or struct, 
but may clash with other visible 
declarations. This is allowed 
because member names are 
qualified by the object they occur 
in. 
Hence the reference x.a means 
look up x, using normal scoping 
rules. Object x should have a type 
that includes local fields. The type 
of x will include a pointer to the 
symbol table containing the field 
declarations. Field a is looked up 
in that symbol table. 



Chains of field references are no 
problem. 
For example, in Java 
System.out.println
is commonly used. 
System is looked up and found to 
be a class in one of the standard 
Java packages (java.lang). Class 
System has a static member out 
(of type PrintStream) and 
PrintStream has a member 
println. 
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Internal and External Field 
Access 
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Within a class, members may be 
accessed without qualification. 
Thus in 
class C {

static int i;
{void subr()

int j = i;
}

}

 
field i is accessed like an ordinary 
non- local variable. 
To implement this, we can treat 
member declarations like an 
ordinary scope in a block- 
structured symbol table. 



When the class definition ends, its 
symbol table is popped and 
members are referenced through 
the symbol table entry for the 
class name. 
This means a simple reference to 
i will no longer work, but C.i will 
be valid. 

 
In languages like C+ +  that allow 
incomplete declarations, symbol 
table references need extra care. 
In 
 
class C 
{ int i; 
public: 
int f();
};
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int C::f(){return i+1;}



when the definition of f() is 
completed, we must restore C’s 
field definitions as a containing 
scope so that the reference to i in 
i+1 is properly compiled. 
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Public and Private Access 
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C+ +  and Java (and most other 
object- oriented languages) allow 
members of a class to be marked 
public or private. 
Within a class the distinction is 
ignored; all members may be 
accessed. 
Outside of the class, when a 
qualified access like C.i is 
required, only public members 
can be accessed. 
This means lookup of class 
members is a two- step process. 
First the member name is looked 
up in the symbol table of the 
class. Then, the public/private 
qualifier is checked. Access to 
private members from outside 
the class generates an error 
message. 



C+ +  and Java also provide a 
protected qualifier that allows 
access from subclasses of the 
class containing the member 
definition. 
When a subclass is defined, it 
“inherits” the member definitions 
of its ancestor classes. Local 
definitions may hide inherited 
definitions. Moreover, inherited 
member definitions must be 
public or protected; private 
definitions may not be directly 
accessed (though they are still 
inherited and may be indirectly 
accessed through other inherited 
definitions). 
Java also allows “blank” access 
qualifiers which allow public 
access by all classes within a 
package (a collection of classes). 
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Packages and Imports 
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Java allows packages which group 
class and interface definitions into 
named units. 
A package requires a symbol table 
to access members. Thus a 
reference 
java.util.Vector
locates the package java.util 
(typically using a CLASSPATH) and 
looks up Vector within it. 
Java supports import statements 
that modify symbol table lookup 
rules. 
A single class import, like 
import java.util.Vector;
brings the name Vector into the 
current symbol table (unless a 



definition of Vector is already 
present). 
An “import on demand” like 
import java.util.*;
will lookup identifiers in the 
named packages after explicit 
user declarations have been 
checked. 
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Classfiles and Object Files 
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Class files (“.class” files, produced 
by Java compilers) and object files 
(“.o” files, produced by C and C+ + 
compilers) contain internal 
symbol tables. 
When a field or method of a Java 
class is accessed, the JVM uses 
the classfile’s internal symbol 
table to access the symbol’s value 
and verify that type rules are 
respected. 
When a C or C+ +  object file is 
linked, the object file’s internal 
symbol table is used to determine 
what external names are 
referenced, and what internally 
defined names will be exported. 



C, C+ + and Java all allow users to 
request that a more complete 
symbol table be generated for 
debugging purposes. This makes 
internal names (like local variable) 
visible so that a debugger can 
display source level information 
while debugging. 
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Overloading 
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A number of programming 
languages, including CSX, Java 
and C+ + , allow method and 
subprogram names to be 
overloaded. 
This means several methods or 
subprograms may share the same 
name, as long as they differ in the 
number or types of parameters they 
accept. For example, 
class C 
{int x; 

public static int sum(int v1,
int v2) {

v2;return v1 +
}
public int sum(int 

return x + v3;
v3) {

}
}



For overloaded identifiers the 
symbol table must return a list of 
valid definitions of the identifier. 
Semantic analysis (type checking) 
then decides which definition to 
use. 
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In the above example, while 
checking 
(new C()).sum(10);
both definitions of sum are returned 
when it is looked up. Since one 
argument is provided, the 
definition that uses one parameter 
is selected and checked. 
A few languages (like Ada) allow 
overloading to be disambiguated on 
the basis of a method’s result type. 
Algorithms that do this analysis are 
known, but are fairly complex. 



Overloaded Operators 
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A few languages, like C+ + , allow 
operators to be overloaded. 
This means users may add new 
definitions for existing operators, 
though they may not create new 
operators or alter existing 
precedence and associativity rules. 
(Such changes would force changes 
to the scanner or parser.) 
For example, 
 
Class complex{ 
  float re, im;
complex operator+(complex d)

{ complex ans;

ans.re 
ans.im 
return

= d.re+re;
= d.im+im;
ans;

} }
complex c,d; c=c+d;



During type checking of an 
operator, all visible definitions of 
the operator (including 
predefined definitions) are 
gathered and examined. 
Only one definition should 
successfully pass type checks. 
Thus in the above example, there 
may be many definitions of +, but 
only one is defined to take 
complex operands. 
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Contextual Resolution 
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Overloading allows multiple 
definitions of the same kind of 
object (method, procedure or 
operator) to co- exist. 
Programming languages also 
sometimes allow reuse of the same 
name in defining different kinds of 
objects. Resolution is by context of 
use. 

For example, in Java, a class name 
may be used for both the class and 
its constructor. Hence we see 
C cvar = new C(10);

In Pascal, the name of a function is 
also used for its return value. 

Java allows rather extensive reuse of 
an identifier, with the same 
identifier potentially denoting a 
class (type), a class constructor, a 



package name, a method and a 
field. 
For example, 
Class C{

double v;
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C(double f) {v=f;}

}
class D { 
  int C;

double 

C cval =

C() {return 1.0;}
new C(C+C());

}

At type- checking time we 
examine all potential definitions 
and use that definition that is 
consistent with the context of 
use. Hence new C() must be a 
constructor, +C() must be a 
function call, etc. 



Allowing multiple definitions to 
co- exist certainly makes type 
checking more complicated than 
in other languages. 
Whether such reuse benefits 
programmers is unclear; it 
certainly violates Java’s “keep it 
simple” philosophy. 
In CSX we allow overloading of 
methods (same name, different 
parameter combinations). 
CSX also allows a label to use 
the same name as any other 
identifier. 
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