
93CS 536 Fall 2012©

A simple example of the use of
JLex is in
~cs536-1/pubic/jlex.2012
Copy the folder to your filespace
and enter
ant clean compile test

94CS 536 Fall 2012©

Input to JLex
There are three sections,
delimited by %%. The general
structure is:
User Code

%%

Jlex Directives

%%

Regular Expression rules

The User Code section is Java
source code to be copied into the
generated Java source file. It
contains utility classes or return
type classes you need. Thus if you
want to return a class
IntlitToken (for integer literals
that are scanned), you include its
definition in the User Code
section.

95CS 536 Fall 2012©

JLex directives are various
instructions you can give JLex to
customize the scanner you
generate.
These are detailed in the JLex
manual. The most important are:
• %{
Code copied into the Yylex
class (extra fields or
methods you may want)
%}

• %eof{
Java code to be executed when
the end of file is reached
%eof}

• %type classname
classname is the return type you
want for the scanner method,
yylex()

96CS 536 Fall 2012©

Macro Definitions
In section two you may also
define macros, that are used in
section three. A macro allows you
to give a name to a regular
expression or character class.
This allows you to reuse
definitions and make regular
expression rule more readable.
Macro definitions are of the form
name = def

Macros are defined one per line.
Here are some simple examples:
Digit=[0-9]

AnyLet=[A-Za-z]

In section 3, you use a macro by
placing its name within { and }.
Thus {Digit} expands to the
character class defining the digits
0 to 9.

97CS 536 Fall 2012©

Regular Expression Rules

The third section of the JLex input
file is a series of token definition
rules of the form
RegExpr {Java code}

When a token matching the given
RegExpr is matched, the
corresponding Java code
(enclosed in “{“ and “}”) is
executed. JLex figures out what
RegExpr applies; you need only
say what the token looks like
(using RegExpr) and what you
want done when the token is
matched (this is usually to return
some token object, perhaps with
some processing of the token
text).

98CS 536 Fall 2012©

Here are some examples:
"+" {return new Token(sym.Plus);}

(" ")+ {/* skip white space */}

{Digit}+ {return
new IntToken(sym.Intlit,
new Integer(yytext()).intValue());}

99CS 536 Fall 2012©

Regular Expressions in JLex
To define a token in JLex, the user
to associates a regular expression
with commands coded in Java.
When input characters that match
a regular expression are read, the
corresponding Java code is
executed. As a user of JLex you
don’t need to tell it how to match
tokens; you need only say what
you want done when a particular
token is matched.
Tokens like white space are
deleted simply by having their
associated command not return
anything. Scanning continues
until a command with a return in
it is executed.
The simplest form of regular
expression is a single string that
matches exactly itself.

100CS 536 Fall 2012©

For example,
if {return new Token(sym.If);}

If you wish, you can quote the
string representing the reserved
word ("if"), but since the string
contains no delimiters or
operators, quoting it is
unnecessary.
For a regular expression operator,
like +, quoting is necessary:
"+" {return

new Token(sym.Plus);}

101CS 536 Fall 2012©

Character Classes
Our specification of the reserved
word if, as shown earlier, is
incomplete. We don’t (yet) handle
upper or mixed-case.
To extend our definition, we’ll use
a very useful feature of Lex and
JLex—character classes.
Characters often naturally fall into
classes, with all characters in a
class treated identically in a token
definition. In our definition of
identifiers all letters form a class
since any of them can be used to
form an identifier. Similarly, in a
number, any of the ten digit
characters can be used.

102CS 536 Fall 2012©

Character classes are delimited by
[and]; individual characters are
listed without any quotation or
separators. However \, ^,] and -,
because of their special meaning
in character classes, must be
escaped. The character class
[xyz] can match a single x, y, or
z.
The character class [\])] can
match a single] or).
(The] is escaped so that it isn’t
misinterpreted as the end of
character class.)
Ranges of characters are
separated by a -; [x-z] is the
same as [xyz]. [0-9] is the set
of all digits and [a-zA-Z] is the
set of all letters, upper- and lower-
case. \ is the escape character,
used to represent unprintables
and to escape special symbols.

103CS 536 Fall 2012©

Following C and Java conventions,
\n is the newline (that is, end of
line), \t is the tab character, \\ is
the backslash symbol itself, and
\010 is the character
corresponding to octal 10.
The ^ symbol complements a
character class (it is JLex’s
representation of the Not
operation).
[^xy] is the character class that
matches any single character
except x and y. The ^ symbol
applies to all characters that
follow it in a character class
definition, so [^0-9] is the set of
all characters that aren’t digits.
[^] can be used to match all
characters.

104CS 536 Fall 2012©

Here are some examples of
character classes:

Character
Class Set of Characters Denoted
[abc] Three characters: a, b and c
[cba] Three characters: a, b and c
[a-c] Three characters: a, b and c
[aabbcc] Three characters: a, b and c
[^abc] All characters except a, b

and c
[\^\-\]] Three characters: ^, - and]
[^] All characters
"[abc]" Not a character class. This

is one five character string:
[abc]

105CS 536 Fall 2012©

Regular Operators in JLex
JLex provides the standard regular
operators, plus some additions.
• Catenation is specified by the

juxtaposition of two expressions;
no explicit operator is used.
Outside of character class brackets,
individual letters and numbers
match themselves; other characters
should be quoted (to avoid
misinterpretation as regular
expression operators).

Case is significant.

Regular Expr Characters Matched
a b cd Four characters: abcd
(a)(b)(cd) Four characters: abcd
[ab][cd] Four different strings: ac or

ad or bc or bd
while Five characters: while
"while" Five characters: while
[w][h][i][l][e] Five characters: while

106CS 536 Fall 2012©

• The alternation operator is |.
Parentheses can be used to control
grouping of subexpressions.
If we wish to match the reserved
word while allowing any mixture
of upper- and lowercase, we can
use
(w|W)(h|H)(i|I)(l|L)(e|E)
or
[wW][hH][iI][lL][eE]

Regular Expr Characters Matched
ab|cd Two different strings: ab or cd
(ab)|(cd) Two different strings: ab or cd
[ab]|[cd] Four different strings: a or b or

c or d

107CS 536 Fall 2012©

• Postfix operators:
* Kleene closure: 0 or more
matches.
(ab)* matches λ or ab or abab or
ababab ...

+ Positive closure: 1 or more
matches.
(ab)+ matches ab or abab or
ababab ...

? Optional inclusion:
expr?

matches expr zero times or once.
expr? is equivalent to (expr) | λ
and eliminates the need for an
explicit λ symbol.

[-+]?[0-9]+ defines an optionally
signed integer literal.

108CS 536 Fall 2012©

• Single match:
The character "." matches any
single character (other than a
newline).

• Start of line:
The character ^ (when used outside
a character class) matches the
beginning of a line.

• End of line:
The character $ matches the end of
a line. Thus,
^A.*e$

matches an entire line that begins
with A and ends with e.

109CS 536 Fall 2012©

Overlapping Definitions
Regular expressions may overlap
(match the same input sequence).
In the case of overlap, two rules
determine which regular
expression is matched:
• The longest possible match is

performed. JLex automatically
buffers characters while deciding
how many characters can be
matched.

• If two expressions match exactly
the same string, the earlier
expression (in the JLex
specification) is preferred.
Reserved words, for example, are
often special cases of the pattern
used for identifiers. Their
definitions are therefore placed
before the expression that defines
an identifier token.

110CS 536 Fall 2012©

Often a “catch all” pattern is
placed at the very end of the
regular expression rules. It is
used to catch characters that
don’t match any of the earlier
patterns and hence are probably
erroneous. Recall that "." matches
any single character (other than a
newline). It is useful in a catch-all
pattern. However, avoid a pattern
like .* which will consume all
characters up to the next newline.
In JLex an unmatched character
will cause a run-time error.

The operators and special
symbols most commonly used in
JLex are summarized below. Note
that a symbol sometimes has one
meaning in a regular expression
and an entirely different meaning

111CS 536 Fall 2012©

in a character class (i.e., within a
pair of brackets). If you find JLex
behaving unexpectedly, it’s a
good idea to check this table to
be sure of how the operators and
symbols you’ve used behave.
Ordinary letters and digits, and
symbols not mentioned (like @)
represent themselves. If you’re
not sure if a character is special or
not, you can always escape it or
make it part of a quoted string.

112CS 536 Fall 2012©

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

(Matches with) to group sub-
expressions.

Represents itself.

) Matches with (to group sub-
expressions.

Represents itself.

[Begins a character class. Represents itself.
] Represents itself. Ends a character

class.
{ Matches with } to signal

macro-expansion.
Represents itself.

} Matches with { to signal
macro-expansion.

Represents itself.

" Matches with " to delimit
strings
(only \ is special within
strings).

Represents itself.

\ Escapes individual charac-
ters.
Also used to specify a char-
acter by its octal code.

Escapes individual
characters.
Also used to spec-
ify a character by
its octal code.

. Matches any one character
except \n.

Represents itself.

| Alternation (or) operator. Represents itself.

113CS 536 Fall 2012©

* Kleene closure operator (zero
or more matches).

Represents itself.

+ Positive closure operator
(one or more matches).

Represents itself.

? Optional choice operator
(one or zero matches).

Represents itself.

/ Context sensitive matching
operator.

Represents itself.

^ Matches only at beginning of
a line.

Complements
remaining
characters in the
class.

$ Matches only at end of a line. Represents itself.
- Represents itself. Range of charac-

ters operator.

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

114CS 536 Fall 2012©

Potential Problems in Using
JLex

The following differences from
“standard” Lex notation appear in
JLex:
• Escaped characters within quoted

strings are not recognized. Hence
"\n" is not a new line character.
Escaped characters outside of
quoted strings (\n) and escaped
characters within character classes
([\n]) are OK.

• A blank should not be used within
a character class (i.e., [and]). You
may use \040 (which is the
character code for a blank).

• A doublequote must be escaped
within a character class. Use [\"]
instead of ["].

115CS 536 Fall 2012©

• Unprintables are defined to be all
characters before blank as well as
the last ASCII character. These can
be represented as: [\000-
\037\177]

116CS 536 Fall 2012©

JLex Examples
A JLex scanner that looks for five
letter words that begin with “P”
and end with “T”.
This example is in
~cs536-1/public/jlex.2012

117CS 536 Fall 2012©

The JLex specification file is:
class Token {

String text;
Token(String t){text = t;}

}
%%
Digit=[0-9]
AnyLet=[A-Za-z]
Others=[0-9’&.]
WhiteSp=[\040\n]
// Tell JLex to have yylex() return a
Token
%type Token
// Tell JLex what to return when eof of
file is hit
%eofval{
return new Token(null);
%eofval}
%%
[Pp]{AnyLet}{AnyLet}{AnyLet}[Tt]{WhiteSp}+

{return new Token(yytext());}

({AnyLet}|{Others})+{WhiteSp}+
{/*skip*/}

118CS 536 Fall 2012©

The Java program that uses the
scanner is:
import java.io.*;

class Main {

public static void main(String args[])
throws java.io.IOException {

Yylex lex = new Yylex(System.in);
Token token = lex.yylex();

while (token.text != null) {
System.out.print("\t"+token.text);
token = lex.yylex(); //get next token

}
}}

119CS 536 Fall 2012©

In case you care, the words that
are matched include:
Pabst

paint

petit

pilot

pivot

plant

pleat

point

posit

Pratt

print

