
121CS 536 Fall 2012©

The JLex specification file is:
import java_cup.runtime.*;

/* Expand this into your solution for
project 2 */

class CSXToken {

int linenum;

int colnum;

CSXToken(int line,int col){

linenum=line;colnum=col;};

}

class CSXIntLitToken extends CSXToken {

int intValue;

CSXIntLitToken(int val,int line,
int col){

super(line,col);intValue=val;};

}

class CSXIdentifierToken extends
CSXToken {

String identifierText;

CSXIdentifierToken(String text,int line,
int col){

super(line,col);identifierText=text;};

}

122CS 536 Fall 2012©

class CSXCharLitToken extends CSXToken {

char charValue;

CSXCharLitToken(char val,int line,
int col){

super(line,col);charValue=val;};

}

class CSXStringLitToken extends CSXToken
{

String stringText;
CSXStringLitToken(String text,
int line,int col){

super(line,col);

stringText=text; };

}

// This class is used to track line and
column numbers

// Feel free to change to extend it

class Pos {

static int linenum = 1;
/* maintain this as line number current

token was scanned on */

static int colnum = 1;
/* maintain this as column number

current token began at */

static int line = 1;
/* maintain this as line number after

scanning current token */

123CS 536 Fall 2012©

static int col = 1;
/* maintain this as column number

after scanning current token */

static void setpos() {
//set starting pos for current token

linenum = line;

colnum = col;}

}

%%

Digit=[0-9]

// Tell JLex to have yylex() return a
Symbol, as JavaCUP will require

%type Symbol

// Tell JLex what to return when eof of
file is hit

%eofval{

return new Symbol(sym.EOF,
new CSXToken(0,0));

%eofval}

124CS 536 Fall 2012©

%%

"+" {Pos.setpos(); Pos.col +=1;

 return new Symbol(sym.PLUS,

new CSXToken(Pos.linenum,
Pos.colnum));}

"!=" {Pos.setpos(); Pos.col +=2;

return new Symbol(sym.NOTEQ,
new CSXToken(Pos.linenum,

Pos.colnum));}

";" {Pos.setpos(); Pos.col +=1;

return new Symbol(sym.SEMI,
new CSXToken(Pos.linenum,

Pos.colnum));}

{Digit}+ {// This def doesn’t check
// for overflow
Pos.setpos();
Pos.col += yytext().length();

return new Symbol(sym.INTLIT,
new CSXIntLitToken(

new Integer(yytext()).intValue(),

Pos.linenum,Pos.colnum));}

\n {Pos.line +=1; Pos.col = 1;}

" " {Pos.col +=1;}

125CS 536 Fall 2012©

The Java program that uses this
scanner (P2) is:

class P2 {
public static void main(String args[])

throws java.io.IOException {
if (args.length != 1) {
System.out.println(
"Error: Input file must be named on
command line.");

System.exit(-1);
}
java.io.FileInputStream yyin = null;
try {
yyin =
new java.io.FileInputStream(args[0]);
} catch (FileNotFoundException

notFound){
System.out.println(

"Error: unable to open input file.”);
System.exit(-1);

}

// lex is a JLex-generated scanner that
// will read from yyin

Yylex lex = new Yylex(yyin);

System.out.println(
"Begin test of CSX scanner.");

126CS 536 Fall 2012©

/**********************************
You should enter code here that
thoroughly test your scanner.

Be sure to test extreme cases,
like very long symbols or lines,
illegal tokens, unrepresentable
integers, illegals strings, etc.
The following is only a starting point.

***********************************/
Symbol token = lex.yylex();

while (token.sym != sym.EOF) {
System.out.print(
((CSXToken) token.value).linenum
+ ":"
+ ((CSXToken) token.value).colnum
+ " ");

switch (token.sym) {
case sym.INTLIT:
System.out.println(
"\tinteger literal(" +
((CSXIntLitToken)
token.value).intValue + ")");
break;

 case sym.PLUS:
System.out.println("\t+");
break;

127CS 536 Fall 2012©

 case sym.NOTEQ:
System.out.println("\t!=");
break;

 default:
throw new RuntimeException();

}

token = lex.yylex(); // get next token
}

System.out.println(
"End test of CSX scanner.");

}}}

128CS 536 Fall 2012©

Other Scanner Issues
We will consider other practical
issues in building real scanners
for real programming languages.
Our finite automaton model
sometimes needs to be
augmented. Moreover, error
handling must be incorporated
into any practical scanner.

129CS 536 Fall 2012©

Identifiers vs. Reserved Words
Most programming languages
contain reserved words like if,
while, switch, etc. These tokens
look like ordinary identifiers, but
aren’t.
It is up to the scanner to decide if
what looks like an identifier is
really a reserved word. This
distinction is vital as reserved
words have different token codes
than identifiers and are parsed
differently.
How can a scanner decide which
tokens are identifiers and which
are reserved words?

130CS 536 Fall 2012©

• We can scan identifiers and
reserved words using the same
pattern, and then look up the token
in a special “reserved word” table.

• It is known that any regular
expression may be complemented
to obtain all strings not in the
original regular expression. Thus A,
the complement of A, is regular if A
is. Using complementation we can
write a regular expression for
nonreserved

identifiers:
Since scanner generators don’t
usually support complementation
of regular expressions, this
approach is more of theoretical
than practical interest.

ident if while …()

131CS 536 Fall 2012©

• We can give distinct regular
expression definitions for each
reserved word, and for identifiers.
Since the definitions overlap (if
will match a reserved word and the
general identifier pattern), we give
priority to reserved words. Thus a
token is scanned as an identifier if
it matches the identifier pattern
and does not match any reserved
word pattern. This approach is
commonly used in scanner
generators like Lex and JLex.

132CS 536 Fall 2012©

Converting Token Values
For some tokens, we may need to
convert from string form into
numeric or binary form.
For example, for integers, we
need to transform a string a digits
into the internal (binary) form of
integers.
We know the format of the token
is valid (the scanner checked
this), but:
• The string may represent an

integer too large to represent in 32
or 64 bit form.

• Languages like CSX and ML use a
non-standard representation for
negative values (~123 instead of
-123)

133CS 536 Fall 2012©

We can safely convert from string
to integer form by first converting
the string to double form,
checking against max and min int,
and then converting to int form if
the value is representable.
Thus d = new Double(str) will
create an object d containing the
value of str in double form. If
str is too large or too small to be
represented as a double, plus or
minus infinity is automatically
substituted.
d.doubleValue() will give d’s
value as a Java double, which can
be compared against
Integer.MAX_VALUE or
Integer.MIN_VALUE.

134CS 536 Fall 2012©

If d.doubleValue() represents a
valid integer,
(int) d.doubleValue()
will create the appropriate integer
value.
If a string representation of an
integer begins with a “~” we can
strip the “~”, convert to a double
and then negate the resulting
value.

135CS 536 Fall 2012©

Scanner Termination

A scanner reads input characters
and partitions them into tokens.
What happens when the end of
the input file is reached? It may be
useful to create an Eof pseudo-
character when this occurs. In
Java, for example,
InputStream.read(), which
reads a single byte, returns -1
when end of file is reached. A
constant, EOF, defined as -1 can
be treated as an “extended” ASCII
character. This character then
allows the definition of an Eof
token that can be passed back to
the parser.
An Eof token is useful because it
allows the parser to verify that
the logical end of a program
corresponds to its physical end.

136CS 536 Fall 2012©

Most parsers require an end of
file token.
Lex and Jlex automatically create
an Eof token when the scanner
they build tries to scan an EOF
character (or tries to scan when
eof() is true).

137CS 536 Fall 2012©

Multi Character Lookahead
We may allow finite automata to
look beyond the next input
character.
This feature is necessary to
implement a scanner for
FORTRAN.
In FORTRAN, the statement
DO 10 J = 1,100

specifies a loop, with index J
ranging from 1 to 100.
The statement
DO 10 J = 1.100

is an assignment to the variable
DO10J. (Blanks are not significant
except in strings.)
A FORTRAN scanner decides
whether the O is the last character
of a DO token only after reading as
far as the comma (or period).

138CS 536 Fall 2012©

A milder form of extended
lookahead problem occurs in
Pascal and Ada.
The token 10.50 is a real literal,
whereas 10..50 is three different
tokens.
We need two-character lookahead
after the 10 prefix to decide
whether we are to return 10 (an
integer literal) or 10.50 (a real
literal).

139CS 536 Fall 2012©

Suppose we use the following FA.

Given 10..100 we scan three
characters and stop in a non-
accepting state.
Whenever we stop reading in a
non-accepting state, we back up
along accepted characters until an
accepting state is found.
Characters we back up over are
rescanned to form later tokens. If
no accepting state is reached
during backup, we have a lexical
error.

.D

D D

D

.
.

140CS 536 Fall 2012©

Performance Considerations
Because scanners do so much
character-level processing, they
can be a real performance
bottleneck in production
compilers.
Speed is not a concern in our
project, but let’s see why scanning
speed can be a concern in
production compilers.
Let’s assume we want to compile
at a rate of 5000 lines/sec. (so
that most programs compile in
just a few seconds).
Assuming 30 characters/line (on
average), we need to scan
150,000 char/sec.

141CS 536 Fall 2012©

A key to efficient scanning is to
group character-level operations
whenever possible. It is better to
do one operation on n characters
rather than n operations on single
characters.
In our examples we’ve read input
one character as a time. A
subroutine call can cost hundreds
or thousands of instructions to
execute—far too much to spend
on a single character.
We prefer routines that do block
reads, putting an entire block of
characters directly into a buffer.
Specialized scanner generators
can produce particularly fast
scanners.
The GLA scanner generator
claims that the scanners it
produces run as fast as:

142CS 536 Fall 2012©

while(c != Eof) {

c = getchar();

}

143CS 536 Fall 2012©

Lexical Error Recovery
A character sequence that can’t be
scanned into any valid token is a
lexical error.
Lexical errors are uncommon, but
they still must be handled by a
scanner. We won’t stop
compilation because of so minor
an error.
Approaches to lexical error
handling include:
• Delete the characters read so far

and restart scanning at the next
unread character.

• Delete the first character read by
the scanner and resume scanning
at the character following it.

Both of these approaches are
reasonable.

144CS 536 Fall 2012©

The first is easy to do. We just
reset the scanner and begin
scanning anew.
The second is a bit harder but
also is a bit safer (less is
immediately deleted). It can be
implemented using scanner
backup.
Usually, a lexical error is caused
by the appearance of some illegal
character, mostly at the beginning
of a token.
(Why at the beginning?)
In these case, the two approaches
are equivalent.
The effects of lexical error
recovery might well create a later
syntax error, handled by the
parser.

145CS 536 Fall 2012©

Consider
...for$tnight...

The $ terminates scanning of for.
Since no valid token begins with
$, it is deleted. Then tnight is
scanned as an identifier. In effect
we get
...for tnight...

which will cause a syntax error.
Such “false errors” are
unavoidable, though a syntactic
error-repair may help.

146CS 536 Fall 2012©

Error Tokens
Certain lexical errors require
special care. In particular,
runaway strings and runaway
comments ought to receive
special error messages.
In Java strings may not cross line
boundaries, so a runaway string
is detected when an end of a line
is read within the string body.
Ordinary recovery rules are
inappropriate for this error. In
particular, deleting the first
character (the double quote
character) and restarting scanning
is a bad decision.
It will almost certainly lead to a
cascade of “false” errors as the
string text is inappropriately
scanned as ordinary input.

147CS 536 Fall 2012©

One way to handle runaway
strings is to define an error token.
An error token is not a valid
token; it is never returned to the
parser. Rather, it is a pattern for
an error condition that needs
special handling. We can define an
error token that represents a
string terminated by an end of
line rather than a double quote
character.
For a valid string, in which
internal double quotes and back
slashes are escaped (and no other
escaped characters are allowed),
we can use
" (Not(" | Eol | \) | \" | \\)* "
For a runaway string we use
" (Not(" | Eol | \) | \" | \\)* Eol
(Eol is the end of line character.)

148CS 536 Fall 2012©

When a runaway string token is
recognized, a special error
message should be issued.
Further, the string may be
“repaired” into a correct string by
returning an ordinary string token
with the closing Eol replaced by a
double quote.
This repair may or may not be
“correct.” If the closing double
quote is truly missing, the repair
will be good; if it is present on a
succeeding line, a cascade of
inappropriate lexical and
syntactic errors will follow.
Still, we have told the
programmer exactly what is
wrong, and that is our primary
goal.

149CS 536 Fall 2012©

In languages like C, C++, Java and
CSX, which allow multiline
comments, improperly terminated
(runaway) comments present a
similar problem.
A runaway comment is not
detected until the scanner finds a
close comment symbol (possibly
belonging to some other
comment) or until the end of file
is reached. Clearly a special,
detailed error message is
required.
Let’s look at Pascal-style
comments that begin with a { and
end with a }. Comments that
begin and end with a pair of
characters, like /* and */ in Java,
C and C++, are a bit trickier.

150CS 536 Fall 2012©

Correct Pascal comments are
defined quite simply:

{ Not(})* }
To handle comments terminated
by Eof, this error token can be
used:

{ Not(})* Eof
We want to handle comments
unexpectedly closed by a close
comment belonging to another
comment:
{... missing close comment
... { normal comment }...

We will issue a warning (this form
of comment is lexically legal).
Any comment containing an open
comment symbol in its body is
most probably a missing } error.

151CS 536 Fall 2012©

We split our legal comment
definition into two token
definitions.
The definition that accepts an
open comment in its body causes
a warning message ("Possible
unclosed comment") to be
printed.
We now use:
{ Not({ | })* } and
{ (Not({ | })* { Not({ | })*)+ }
The first definition matches
correct comments that do not
contain an open comment in their
body.
The second definition matches
correct, but suspect, comments
that contain at least one open
comment in their body.

152CS 536 Fall 2012©

Single line comments, found in
Java, CSX and C++, are terminated
by Eol.
They can fall prey to a more
subtle error—what if the last line
has no Eol at its end?
The solution?
Another error token for single line
comments:

// Not(Eol)*

This rule will only be used for
comments that don’t end with an
Eol, since scanners always match
the longest rule possible.

