
143CS 536  Fall 2012©

Lexical Error Recovery
A character sequence that can’t be
scanned into any valid token is a
lexical error.
Lexical errors are uncommon, but
they still must be handled by a
scanner. We won’t stop
compilation because of so minor
an error.
Approaches to lexical error
handling include:
• Delete the characters read so far

and restart scanning at the next
unread character.

• Delete the first character read by
the scanner and resume scanning
at the character following it.

Both of these approaches are
reasonable.

144CS 536  Fall 2012©

The first is easy to do. We just
reset the scanner and begin
scanning anew.
The second is a bit harder but
also is a bit safer (less is
immediately deleted). It can be
implemented using scanner
backup.
Usually, a lexical error is caused
by the appearance of some illegal
character, mostly at the beginning
of a token.
(Why at the beginning?)
In these case, the two approaches
are equivalent.
The effects of lexical error
recovery might well create a later
syntax error, handled by the
parser.

145CS 536  Fall 2012©

Consider
...for$tnight...

The $ terminates scanning of for.
Since no valid token begins with
$, it is deleted. Then tnight is
scanned as an identifier. In effect
we get
...for tnight...

which will cause a syntax error.
Such “false errors” are
unavoidable, though a syntactic
error-repair may help.

146CS 536  Fall 2012©

Error Tokens
Certain lexical errors require
special care. In particular,
runaway strings and runaway
comments ought to receive
special error messages.
In Java strings may not cross line
boundaries, so a runaway string
is detected when an end of a line
is read within the string body.
Ordinary recovery rules are
inappropriate for this error. In
particular, deleting the first
character (the double quote
character) and restarting scanning
is a bad decision.
It will almost certainly lead to a
cascade of “false” errors as the
string text is inappropriately
scanned as ordinary input.



147CS 536  Fall 2012©

One way to handle runaway
strings is to define an error token.
An error token is not a valid
token; it is never returned to the
parser. Rather, it is a pattern for
an error condition that needs
special handling. We can define an
error token that represents a
string terminated by an end of
line rather than a double quote
character.
For a valid string, in which
internal double quotes and back
slashes are escaped (and no other
escaped characters are allowed),
we can use
" ( Not( " | Eol | \ ) | \" | \\ )* "
For a runaway string we use
" ( Not( " | Eol | \ ) | \" | \\ )* Eol
(Eol is the end of line character.)

148CS 536  Fall 2012©

When a runaway string token is
recognized, a special error
message should be issued.
Further, the string may be
“repaired” into a correct string by
returning an ordinary string token
with the closing Eol replaced by a
double quote.
This repair may or may not be
“correct.” If the closing double
quote is truly missing, the repair
will be good; if it is present on a
succeeding line, a cascade of
inappropriate lexical and
syntactic errors will follow.
Still, we have told the
programmer exactly what is
wrong, and that is our primary
goal.

149CS 536  Fall 2012©

In languages like C, C++, Java and
CSX, which allow multiline
comments, improperly terminated
(runaway) comments present a
similar problem.
A runaway comment is not
detected until the scanner finds a
close comment symbol (possibly
belonging to some other
comment) or until the end of file
is reached. Clearly a special,
detailed error message is
required.
Let’s look at Pascal-style
comments that begin with a { and
end with a }. Comments that
begin and end with a pair of
characters, like /* and */ in Java,
C and C++, are a bit trickier.

150CS 536  Fall 2012©

Correct Pascal comments are
defined quite simply:

{ Not( } )* }
To handle comments terminated
by Eof, this error token can be
used:

{ Not( } )* Eof
We want to handle comments
unexpectedly closed by a close
comment belonging to another
comment:
{... missing close comment
... { normal comment }...

We will issue a warning (this form
of comment is lexically legal).
Any comment containing an open
comment symbol in its body is
most probably a missing } error.



151CS 536  Fall 2012©

We split our legal comment
definition into two token
definitions.
The definition that accepts an
open comment in its body causes
a warning message ("Possible
unclosed comment") to be
printed.
We now use:
{  Not( { | } )* } and
{  (Not( { | } )* { Not( { | } )* )+ }
The first definition matches
correct comments that do not
contain an open comment in their
body.
The second definition matches
correct, but suspect, comments
that contain at least one open
comment in their body.

152CS 536  Fall 2012©

Single line comments, found in
Java, CSX and C++, are terminated
by Eol.
They can fall prey to a more
subtle error—what if the last line
has no Eol at its end?
The solution?
Another error token for single line
comments:

// Not(Eol)*

This rule will only be used for
comments that don’t end with an
Eol, since scanners always match
the longest rule possible.

153CS 536  Fall 2012©

Regular Expressions and Finite
Automata

Regular expressions are fully
equivalent to finite automata.
The main job of a scanner
generator like JLex is to transform
a regular expression definition
into an equivalent finite
automaton.
It first transforms a regular
expression intoa nondeterministic
finite automaton (NFA).
Unlike ordinary deterministic
finite automata, an NFA need not
make a unique (deterministic)
choice of a successor state to
visit. As shown below, an NFA is
allowed to have a state that has
two transitions (arrows) coming
out of it, labeled by the same

154CS 536  Fall 2012©

symbol. An NFA may also have
transitions labeled with λ.

Transitions are normally labeled
with individual characters in Σ,
and although λ is a string (the
string with no characters in it), it
is definitely not a character. In the
above example, when the
automaton is in the state at the
left and the next input character
is a, it may choose to use the
transition labeled a or first follow

a

a

a

λ
a



155CS 536  Fall 2012©

the λ transition (you can always
find λ wherever you look for it)
and then follow an a transition.
FAs that contain no λ transitions
and that always have unique
successor states for any symbol
are deterministic.

156CS 536  Fall 2012©

Building Finite Automata From
Regular Expressions

We make an FA from a regular
expression in two steps:
• Transform the regular expression

into an NFA.
• Transform the NFA into a

deterministic FA.
The first step is easy.
Regular expressions are all built
out of the atomic regular
expressions a (where a is a
character in Σ) and λ by using the
three operations
A B and A | B and A*.

157CS 536  Fall 2012©

Other operations (like A+) are just
abbreviations for combinations of
these.
NFAs for a and λ are trivial:

Suppose we have NFAs for A and
B and want one for A | B. We
construct the NFA shown below:

a

λ

A

B

Finite
Automaton

for A

Finite
Automaton

for B

λ

λ

λ

λ

158CS 536  Fall 2012©

The states labeled A and B were
the accepting states of the
automata for A and B; we create a
new accepting state for the
combined automaton.
A path through the top automaton
accepts strings in A, and a path
through the bottom automation
accepts strings in B, so the whole
automaton matches A | B.
The construction for A B is even
easier. The accepting state of the
combined automaton is the same
state that was the accepting state
of B. We must follow a path
through A’s automaton, then
through B’s automaton, so overall
A B is matched.
We could also just merge the
accepting state of A with the
initial state of B. We chose not to



159CS 536  Fall 2012©

only because the picture would be
more difficult to draw.

A
Finite

Automaton
for A

Finite
Automaton

for B

λ

160CS 536  Fall 2012©

Finally, let’s look at the NFA for
A*. The start state reaches an
accepting state via λ, so λ is
accepted. Alternatively, we can
follow a path through the FA for A
one or more times, so zero or
more strings that belong to A are
matched.

A
Finite

Automaton
for A

λ

λ

λ

λ

161CS 536  Fall 2012©

Creating Deterministic
Automata

The transformation from an NFA N
to an equivalent DFA D works by
what is sometimes called the
subset construction.
Each state of D corresponds to a
set of states of N.
The idea is that D will be in state
{x, y, z} after reading a given input
string if and only if N could be in
any one of the states x, y, or z,
depending on the transitions it
chooses. Thus D keeps track of all
the possible routes N might take
and runs them simultaneously.
Because N is a finite automaton, it
has only a finite number of states.
The number of subsets of N’s
states is also finite, which makes

162CS 536  Fall 2012©

tracking various sets of states
feasible.
An accepting state of D will be
any set containing an accepting
state of N, reflecting the
convention that N accepts if there
is any way it could get to its
accepting state by choosing the
“right” transitions.
The start state of D is the set of all
states that N could be in without
reading any input characters—
that
is, the set of states reachable
from the start state of N following
only λ transitions. Algorithm
close computes those states that
can be reached following only λ
transitions.
Once the start state of D is built,
we begin to create successor
states:



163CS 536  Fall 2012©

We take each state S of D, and
each character c, and compute S’s
successor under c.
S is identified with some set of N’s
states, {n1, n2,...}.

We find all the possible successor
states to {n1, n2,...} under c,
obtaining a set {m1, m2,...}.

Finally, we compute
T = CLOSE({ m1, m2,...}).
T becomes a state in D, and a
transition from S to T labeled with
c is added to D.
We continue adding states and
transitions to D until all possible
successors to existing states are
added.
Because each state corresponds
to a finite subset of N’s states, the

164CS 536  Fall 2012©

process of adding new states to D
must eventually terminate.
Here is the algorithm for λ-
closure, called close. It starts
with a set of NFA states, S, and
adds to S all states reachable from
S using only λ transitions.
void close(NFASet S) {

while (x in S and x →
λ

y
and y notin S) {

S = S U {y}
}}

Using close, we can define the
construction of a DFA, D, from an NFA,
N:

165CS 536  Fall 2012©

DFA MakeDeterministic(NFA N) {
DFA D ; NFASet  T
D.StartState = { N.StartState }
close(D.StartState)
D.States = { D.StartState }
while (states or transitions can be

added to D) {
Choose any state S in D.States

and any character c in Alphabet

T = {y in N.States such that

x →c y for some x in S}
close(T);
if (T notin D.States) {

D.States = D.States U {T}

D.Transitions =
D.Transitions U

{the transition S →c T}

 } }
D.AcceptingStates =
{ S in D.States such that an

accepting state of N in S}
}

166CS 536  Fall 2012©

Example
To see how the subset
construction operates, consider
the following NFA:

We start with state 1, the start
state of N, and add state 2 its λ-
successor.
D’s start state is {1,2}.
Under a, {1,2}’s successor is
{3,4,5}.

aλ
1 2

3 4

5

b

a

b

a

a | b



167CS 536  Fall 2012©

State 1 has itself as a successor
under b. When state 1’s λ-
successor, 2, is included, {1,2}’s
successor is {1,2}. {3,4,5}’s
successors under a and b are {5}
and {4,5}.
{4,5}’s successor under b is {5}.
Accepting states of D are those
state sets that contain N’s
accepting state which is 5.
The resulting DFA is:

b
1,2

5

4,5

b

a

a | b

a
3,4,5

5

168CS 536  Fall 2012©

It is not too difficult to establish
that the DFA constructed by
MakeDeterministic is equivalent to
the original NFA.
The idea is that each path to an
accepting state in the original NFA
has a corresponding path in the
DFA. Similarly, all paths through
the constructed DFA correspond
to paths in the original NFA.
What is less obvious is the fact
that the DFA that is built can
sometimes be much larger than
the original NFA. States of the DFA
are identified with sets of NFA
states.
If the NFA has n states, there are
2n distinct sets of NFA states, and
hence the DFA may have as many
as 2n states. Certain NFAs actually

169CS 536  Fall 2012©

exhibit this exponential blowup in
size when made deterministic.
Fortunately, the NFAs built from
the kind of regular expressions
used to specify programming
language tokens do not exhibit
this problem when they are made
deterministic.
As a rule, DFAs used for scanning
are simple and compact.
If creating a DFA is impractical
(because of size or speed-of-
generation concerns), we can
scan using an NFA. Each possible
path through an NFA is tracked,
and reachable accepting states
are identified. Scanning is slower
using this approach, so it is used
only when construction of a DFA
is not practical.


