
156CS 536 Fall 2012©

Building Finite Automata From
Regular Expressions

We make an FA from a regular
expression in two steps:
• Transform the regular expression

into an NFA.
• Transform the NFA into a

deterministic FA.
The first step is easy.
Regular expressions are all built
out of the atomic regular
expressions a (where a is a
character in Σ) and λ by using the
three operations
A B and A | B and A*.

157CS 536 Fall 2012©

Other operations (like A+) are just
abbreviations for combinations of
these.
NFAs for a and λ are trivial:

Suppose we have NFAs for A and
B and want one for A | B. We
construct the NFA shown below:

a

λ

A

B

Finite
Automaton

for A

Finite
Automaton

for B

λ

λ

λ

λ

158CS 536 Fall 2012©

The states labeled A and B were
the accepting states of the
automata for A and B; we create a
new accepting state for the
combined automaton.
A path through the top automaton
accepts strings in A, and a path
through the bottom automation
accepts strings in B, so the whole
automaton matches A | B.
The construction for A B is even
easier. The accepting state of the
combined automaton is the same
state that was the accepting state
of B. We must follow a path
through A’s automaton, then
through B’s automaton, so overall
A B is matched.
We could also just merge the
accepting state of A with the
initial state of B. We chose not to

159CS 536 Fall 2012©

only because the picture would be
more difficult to draw.

A
Finite

Automaton
for A

Finite
Automaton

for B

λ

160CS 536 Fall 2012©

Finally, let’s look at the NFA for
A*. The start state reaches an
accepting state via λ, so λ is
accepted. Alternatively, we can
follow a path through the FA for A
one or more times, so zero or
more strings that belong to A are
matched.

A
Finite

Automaton
for A

λ

λ

λ

λ

161CS 536 Fall 2012©

Creating Deterministic
Automata

The transformation from an NFA N
to an equivalent DFA D works by
what is sometimes called the
subset construction.
Each state of D corresponds to a
set of states of N.
The idea is that D will be in state
{x, y, z} after reading a given input
string if and only if N could be in
any one of the states x, y, or z,
depending on the transitions it
chooses. Thus D keeps track of all
the possible routes N might take
and runs them simultaneously.
Because N is a finite automaton, it
has only a finite number of states.
The number of subsets of N’s
states is also finite, which makes

162CS 536 Fall 2012©

tracking various sets of states
feasible.
An accepting state of D will be
any set containing an accepting
state of N, reflecting the
convention that N accepts if there
is any way it could get to its
accepting state by choosing the
“right” transitions.
The start state of D is the set of all
states that N could be in without
reading any input characters—
that
is, the set of states reachable
from the start state of N following
only λ transitions. Algorithm
close computes those states that
can be reached following only λ
transitions.
Once the start state of D is built,
we begin to create successor
states:

163CS 536 Fall 2012©

We take each state S of D, and
each character c, and compute S’s
successor under c.
S is identified with some set of N’s
states, {n1, n2,...}.

We find all the possible successor
states to {n1, n2,...} under c,
obtaining a set {m1, m2,...}.

Finally, we compute
T = CLOSE({ m1, m2,...}).
T becomes a state in D, and a
transition from S to T labeled with
c is added to D.
We continue adding states and
transitions to D until all possible
successors to existing states are
added.
Because each state corresponds
to a finite subset of N’s states, the

164CS 536 Fall 2012©

process of adding new states to D
must eventually terminate.
Here is the algorithm for λ-
closure, called close. It starts
with a set of NFA states, S, and
adds to S all states reachable from
S using only λ transitions.
void close(NFASet S) {

while (x in S and x →
λ

y
and y notin S) {

S = S U {y}
}}

Using close, we can define the
construction of a DFA, D, from an NFA,
N:

165CS 536 Fall 2012©

DFA MakeDeterministic(NFA N) {
DFA D ; NFASet T
D.StartState = { N.StartState }
close(D.StartState)
D.States = { D.StartState }
while (states or transitions can be

added to D) {
Choose any state S in D.States
and any character c in Alphabet

T = {y in N.States such that

x →c y for some x in S}
close(T);
if (T notin D.States) {

D.States = D.States U {T}

D.Transitions =
D.Transitions U

{the transition S →c T}

 } }
D.AcceptingStates =
{ S in D.States such that an

accepting state of N in S}
}

166CS 536 Fall 2012©

Example
To see how the subset
construction operates, consider
the following NFA:

We start with state 1, the start
state of N, and add state 2 its λ-
successor.
D’s start state is {1,2}.
Under a, {1,2}’s successor is
{3,4,5}.

aλ
1 2

3 4

5

b

a

b

a

a | b

167CS 536 Fall 2012©

State 1 has itself as a successor
under b. When state 1’s λ-
successor, 2, is included, {1,2}’s
successor is {1,2}. {3,4,5}’s
successors under a and b are {5}
and {4,5}.
{4,5}’s successor under b is {5}.
Accepting states of D are those
state sets that contain N’s
accepting state which is 5.
The resulting DFA is:

b
1,2

5

4,5

b

a

a | b

a
3,4,5

5

168CS 536 Fall 2012©

It is not too difficult to establish
that the DFA constructed by
MakeDeterministic is equivalent to
the original NFA.
The idea is that each path to an
accepting state in the original NFA
has a corresponding path in the
DFA. Similarly, all paths through
the constructed DFA correspond
to paths in the original NFA.
What is less obvious is the fact
that the DFA that is built can
sometimes be much larger than
the original NFA. States of the DFA
are identified with sets of NFA
states.
If the NFA has n states, there are
2n distinct sets of NFA states, and
hence the DFA may have as many
as 2n states. Certain NFAs actually

169CS 536 Fall 2012©

exhibit this exponential blowup in
size when made deterministic.
Fortunately, the NFAs built from
the kind of regular expressions
used to specify programming
language tokens do not exhibit
this problem when they are made
deterministic.
As a rule, DFAs used for scanning
are simple and compact.
If creating a DFA is impractical
(because of size or speed-of-
generation concerns), we can
scan using an NFA. Each possible
path through an NFA is tracked,
and reachable accepting states
are identified. Scanning is slower
using this approach, so it is used
only when construction of a DFA
is not practical.

170CS 536 Fall 2012©

Optimizing Finite Automata
We can improve the DFA created
by MakeDeterministic.
Sometimes a DFA will have more
states than necessary. For every
DFA there is a unique smallest
equivalent DFA (fewest states
possible).
Some DFA’s contain unreachable
states that cannot be reached
from the start state.
Other DFA’s may contain dead
states that cannot reach any
accepting state.
It is clear that neither unreachable
states nor dead states can
participate in scanning any valid
token. We therefore eliminate all
such states as part of our
optimization process.

171CS 536 Fall 2012©

We optimize a DFA by merging
together states we know to be
equivalent.
For example, two accepting states
that have no transitions at all out
of them are equivalent.
Why? Because they behave exactly
the same way—they accept the
string read so far, but will accept
no additional characters.
If two states, s1 and s2, are
equivalent, then all transitions to
s2 can be replaced with
transitions to s1. In effect, the two
states are merged together into
one common state.

How do we decide what states to
merge together?

172CS 536 Fall 2012©

We take a greedy approach and
try the most optimistic merger of
states. By definition, accepting
and non-accepting states are
distinct, so we initially try to
create only two states: one
representing the merger of all
accepting states and the other
representing the merger of all
non-accepting states.
This merger into only two states
is almost certainly too optimistic.
In particular, all the constituents
of a merged state must agree on
the same transition for each
possible character. That is, for
character c all the merged states
must have no successor under c
or they must all go to a single
(possibly merged) state.
If all constituents of a merged
state do not agree on the

173CS 536 Fall 2012©

transition to follow for some
character, the merged state is split
into two or more smaller states
that do agree.
As an example, assume we start
with the following automaton:

Initially we have a merged non-
accepting state {1,2,3,5,6} and a
merged accepting state {4,7}.
A merger is legal if and only if all
constituent states agree on the
same successor state for all
characters. For example, states 3
and 6 would go to an accepting
state given character c; states 1, 2,
5 would not, so a split must occur.

a

b

b c

c
d

1 2 3 4

5 6 7

174CS 536 Fall 2012©

We will add an error state sE to the
original DFA that is the successor
state under any illegal character.
(Thus reaching sE becomes
equivalent to detecting an illegal
token.) sE is not a real state; rather
it allows us to assume every state
has a successor under every
character. sE is never merged with
any real state.
Algorithm Split , shown below,
splits merged states whose
constituents do not agree on a
common successor state for all
characters. When Split
terminates, we know that the
states that remain merged are
equivalent in that they always
agree on common successors.

175CS 536 Fall 2012©

Split(FASet StateSet) {
repeat
for(each merged state S in StateSet) {

Let S correspond to {s1,...,sn}
for(each char c in Alphabet){

Let t1,...,tn be the successor
states to s1,...,sn under c
if(t1,...,tn do not all belong to

the same merged state){
Split S into two or more new
states such that si and sj
remain in the same merged
state if and only if ti and tj
are in the same merged state}

}
until no more splits are possible

}

176CS 536 Fall 2012©

Returning to our example, we
initially have states {1,2,3,5,6} and
{4,7}. Invoking Split , we first
observe that states 3 and 6 have a
common successor under c, and
states 1, 2, and 5 have no
successor under c (equivalently,
have the error state sE as a
successor).
This forces a split, yielding {1,2,5},
{3,6} and {4,7}.
Now, for character b, states 2 and
5 would go to the merged state
{3,6}, but state 1 would not, so
another split occurs.
We now have: {1}, {2,5}, {3,6} and
{4,7}.
At this point we are done, as all
constituents of merged states
agree on the same successor for
each input symbol.

177CS 536 Fall 2012©

Once Split is executed, we are
essentially done.
Transitions between merged
states are the same as the
transitions between states in the
original DFA.
Thus, if there was a transition
between state si and sj under
character c, there is now a
transition under c from the
merged state containing si to the
merged state containing sj. The
start state is that merged state
containing the original start state.
Accepting states are those
merged states containing
accepting states (recall that
accepting and non-accepting
states are never merged).

178CS 536 Fall 2012©

Returning to our example, the
minimum state automaton we
obtain is

a | d b c
1 2,5 3,6 4,7

179CS 536 Fall 2012©

Properties of Regular
Expressions and Finite
Automata
• Some token patterns can’t be defined

as regular expressions or finite
automata. Consider the set of
balanced brackets of the form [[[…]]].
This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is not regular.
No finite automaton that recognizes
exactly this set can exist.
Why? Consider the inputs [, [[, [[[, ...
For two different counts (call them i
and j) [i and [j must reach the same
state of a given FA! (Why?)
Once that happens, we know that if [i]i

is accepted (as it should be), the [j]i

will also be accepted (and that should
not happen).

180CS 536 Fall 2012©

• R = V* - R is regular if R is.
Why?
Build a finite automaton for R. Be
careful to include transitions to an
“error state” sE for illegal characters.
Now invert final and non-final states.
What was previously accepted is now
rejected, and what was rejected is
now accepted. That is, R is accepted
by the modified automaton.

• Not all subsets of a regular set are
themselves regular. The regular
expression [+]+ has a subset that isn’t
regular. (What is that subset?)

181CS 536 Fall 2012©

• Let R be a set of strings. Define Rrev as
all strings in R, in reversed (backward)
character order.
Thus if R = {abc, def}
then Rrev = {cba, fed}.
If R is regular, then Rrev is too.
Why? Build a finite automaton for R.
Make sure the automaton has only one
final state. Now reverse the direction
of all transitions, and interchange the
start and final states. What does the
modified automation accept?

182CS 536 Fall 2012©

• If R1 and R2 are both regular, then
R1 ∩ R2 is also regular. We can show
this two different ways:

1. Build two finite automata, one
for R1 and one for R2. Pair
together states of the two
automata to match R1 and R2
simultaneously. The paired-state
automaton accepts only if both
R1 and R2 would, so
R1 ∩ R2 is matched.

2. We can use the fact that R1 ∩ R2

is = We already know
union and complementation are
regular.

R1 R2∪

