
265CS 536 Fall 2012©

Table-Driven Top-Down
Parsers

Recursive descent parsers have
many attractive features. They are
actual pieces of code that can be
read by programmers and
extended.
This makes it fairly easy to
understand how parsing is done.
Parsing procedures are also
convenient places to add code to
build ASTs, or to do type-
checking, or to generate code.
A major drawback of recursive
descent is that it is quite
inconvenient to change the
grammar being parsed. Any
change, even a minor one, may
force parsing procedures to be

266CS 536 Fall 2012©

reprogrammed, as productions
and predict sets are modified.
To a less extent, recursive descent
parsing is less efficient than it
might be, since subprograms are
called just to match a single token
or to recognize a righthand side.

An alternative to parsing
procedures is to encode all
prediction in a parsing table. A
pre-programed driver program
can use a parse table (and list of
productions) to parse any LL(1)
grammar.
If a grammar is changed, the
parse table and list of productions
will change, but the driver need
not be changed.

267CS 536 Fall 2012©

LL(1) Parse Tables
An LL(1) parse table, T, is a two-
dimensional array. Entries in T are
production numbers or blank
(error) entries.
T is indexed by:
• A, a non-terminal. A is the non-

terminal we want to expand.
• CT, the current token that is to be

matched.
• T[A][CT] = A → X1...Xn

if CT is in Predict(A → X1...Xn)
T[A][CT] = error
if CT predicts no production with A
as its lefthand side

268CS 536 Fall 2012©

CSX-lite Example
Production Predict Set

1 Prog → { Stmts } Eof {

2 Stmts → Stmt Stmts id if

3 Stmts → λ }

4 Stmt → id = Expr ; id

5 Stmt → if (Expr) Stmt if

6 Expr → id Etail id

7 Etail → + Expr +

8 Etail → - Expr -

9 Etail → λ) ;

{ } if () id = + - ; eof

Prog 1

Stmts 3 2 2

Stmt 5 4

Expr 6

Etail 9 7 8 9

269CS 536 Fall 2012©

LL(1) Parser Driver
Here is the driver we’ll use with
the LL(1) parse table. We’ll also
use a parse stack that remembers
symbols we have yet to match.

void LLDriver(){

Push(StartSymbol);

while(! stackEmpty()){

//Let X=Top symbol on parse stack

//Let CT = current token to match

if (isTerminal(X)) {

match(X); //CT is updated

pop(); //X is updated

} else if (T[X][CT] != Error){

//Let T[X][CT] = X→Y1...Ym
Replace X with

Y1...Ym on parse stack

} else SyntaxError(CT);

}

}

270CS 536 Fall 2012©

Example of LL(1) Parsing
We’ll again parse
{ a = b + c; } Eof

We start by placing Prog (the start
symbol) on the parse stack.

Parse Stack Remaining Input

Prog { a = b + c; } Eof

{
Stmts
}
Eof

{ a = b + c; } Eof

Stmts
}
Eof

a = b + c; } Eof

Stmt
Stmts
}
Eof

a = b + c; } Eof

271CS 536 Fall 2012©

id
=
Expr
;
Stmts
}
Eof

a = b + c; } Eof

=
Expr
;
Stmts
}
Eof

 = b + c; } Eof

Expr
;
Stmts
}
Eof

 b + c; } Eof

id
Etail
;
Stmts
}
Eof

 b + c; } Eof

Parse Stack Remaining Input

272CS 536 Fall 2012©

Etail
;
Stmts
}
Eof

 + c; } Eof

+
Expr
;
Stmts
}
Eof

 + c; } Eof

Expr
;
Stmts
}
Eof

 c; } Eof

id
Etail
;
Stmts
}
Eof

 c; } Eof

Parse Stack Remaining Input

273CS 536 Fall 2012©

Etail
;
Stmts
}
Eof

; } Eof

;
Stmts
}
Eof

; } Eof

Stmts
}
Eof

} Eof

}
Eof

} Eof

Eof Eof

Done! All input matched

Parse Stack Remaining Input

274CS 536 Fall 2012©

Syntax Errors in LL(1)
Parsing

In LL(1) parsing, syntax errors
are automatically detected as
soon as the first illegal token is
seen.
How? When an illegal token is
seen by the parser, either it
fetches an error entry from the
LL(1) parse table or it fails to
match an expected token.
Let’s see how the following
illegal CSX-lite program is
parsed:
{ b + c = a; } Eof

(Where should the first syntax
error be detected?)

275CS 536 Fall 2012©

Parse Stack Remaining Input

Prog { b + c = a; } Eof

{
Stmts
}
Eof

{ b + c = a; } Eof

Stmts
}
Eof

b + c = a; } Eof

Stmt
Stmts
}
Eof

b + c = a; } Eof

id
=
Expr
;
Stmts
}
Eof

b + c = a; } Eof

276CS 536 Fall 2012©

=
Expr
;
Stmts
}
Eof

 + c = a; } Eof

Current token (+) fails
to match expected
token (=)!

 + c = a; } Eof

Parse Stack Remaining Input

277CS 536 Fall 2012©

How do LL(1) Parsers Build
Syntax Trees?

So far our LL(1) parser has acted
like a recognizer. It verifies that
input token are syntactically
correct, but it produces no
output.
Building complete (concrete)
parse trees automatically is fairly
easy.
As tokens and non-terminals are
matched, they are pushed onto a
second stack, the semantic stack.
At the end of each production, an
action routine pops off n items
from the semantic stack (where n
is the length of the production’s
righthand side). It then builds a
syntax tree whose root is the

278CS 536 Fall 2012©

lefthand side, and whose children
are the n items just popped off.

For example, for production
Stmt → id = Expr ;

the parser would include an
action symbol after the “;” whose
actions are:
P4 = pop(); // Semicolon token
P3 = pop(): // Syntax tree for Expr
P2 = pop(); // Assignment token
P1 = pop(); // Identifier token
Push(new StmtNode(P1,P2,P3,P4));

279CS 536 Fall 2012©

Creating Abstract Syntax
Trees

Recall that we prefer that parsers
generate abstract syntax trees,
since they are simpler and more
concise.
Since a parser generator can’t
know what tree structure we want
to keep, we must allow the user
to define “custom” action code,
just as Java CUP does.
We allow users to include “code
snippets” in Java or C. We also
allow labels on symbols so that
we can refer to the tokens and
tress we wish to access. Our
production and action code will
now look like this:
Stmt → id:i = Expr:e ;
{: RESULT = new StmtNode(i,e); :}

280CS 536 Fall 2012©

How do We Make Grammars
LL(1)?

Not all grammars are LL(1);
sometimes we need to modify a
grammar’s productions to create
the disjoint Predict sets LL1)
requires.
There are two common problems
in grammars that make unique
prediction difficult or impossible:

1. Common prefixes.
Two or more productions with
the same lefthand side begin
with the same symbol(s).
For example,

Stmt → id = Expr ;
Stmt → id (Args) ;

281CS 536 Fall 2012©

2. Left-Recursion
A production of the form

A → A ...
is said to be left-recursive.
When a left-recursive production
is used, a non-terminal is
immediately replaced by itself
(with additional symbols
following).
Any grammar with a left-recursive
production can never be LL(1).
Why?
Assume a non-terminal A reaches
the top of the parse stack, with
CT as the current token. The LL(1)
parse table entry, T[A][CT],
predicts A → A ...
We expand A again, and T[A][CT],
so we predict A → A ... again. We
are in an infinite prediction loop!

282CS 536 Fall 2012©

Eliminating Common Prefixes
Assume we have two of more
productions with the same
lefthand side and a common
prefix on their righthand sides:
A → α β | α γ | ... | α δ
We create a new non-terminal, X.
We then rewrite the above
productions into:
A → αX X → β | γ | ... | δ
For example,

Stmt → id = Expr ;
Stmt → id (Args) ;

becomes
Stmt → id StmtSuffix
StmtSuffix → = Expr ;
StmtSuffix → (Args) ;

283CS 536 Fall 2012©

Eliminating Left Recursion
Assume we have a non-terminal
that is left recursive:
A → Aα A → β | γ | ... | δ
To eliminate the left recursion, we
create two new non-terminals, N
and T.
We then rewrite the above
productions into:
A → N T N → β | γ | ... | δ
T → α T | λ

284CS 536 Fall 2012©

For example,
Expr → Expr + id
Expr → id

becomes
Expr → N T
N → id
T → + id T | λ

This simplifies to:
Expr → id T
T → + id T | λ

