
285CS 536 Fall 2012©

Reading Assignment
Read Sections 6.1 to 6.5.1 of
Crafting a Compiler featuring
Java.

286CS 536 Fall 2012©

How does JavaCup Work?
The main limitation of LL(1)
parsing is that it must predict the
correct production to use when it
first starts to match the
production’s righthand side.
An improvement to this approach
is the LALR(1) parsing method
that is used in JavaCUP (and Yacc
and Bison too).
The LALR(1) parser is bottom-up
in approach. It tracks the portion
of a righthand side already
matched as tokens are scanned. It
may not know immediately which
is the correct production to
choose, so it tracks sets of
possible matching productions.

287CS 536 Fall 2012©

Configurations
We’ll use the notation

X → A B • C D
to represent the fact that we are
trying to match the production
X → A B • C D with A and B
matched so far.

A production with a “•”
somewhere in its righthand side is
called a configuration.
Our goal is to reach a
configuration with the “dot” at the
extreme right:

X → A B C D •

This indicates that an entire
production has just been
matched.

288CS 536 Fall 2012©

Since we may not know which
production will eventually be fully
matched, we may need to track a
configuration set. A configuration
set is sometimes called a state.
When we predict a production, we
place the “dot” at the beginning of
a production:

X → • A B C D
This indicates that the production
may possibly be matched, but no
symbols have actually yet been
matched.
We may predict a λ-production:

X → λ •

When a λ-production is predicted,
it is immediately matched, since λ
can be matched at any time.

289CS 536 Fall 2012©

Starting the Parse
At the start of the parse, we know
some production with the start
symbol must be used initially. We
don’t yet know which one, so we
predict them all:

S → • A B C D

S → • e F g

S → • h I
...

290CS 536 Fall 2012©

Closure
When we encounter a
configuration with the dot to the
left of a non-terminal, we know
we need to try to match that non-
terminal.
Thus in

X → • A B C D
we need to match some
production with A as its left hand
side.
Which production?
We don’t know, so we predict all
possibilities:

A → • P Q R

A → • s T
...

291CS 536 Fall 2012©

The newly added configurations
may predict other non-terminals,
forcing additional productions to
be included. We continue this
process until no additional
configurations can be added.
This process is called closure (of
the configuration set).
Here is the closure algorithm:
ConfigSet Closure(ConfigSet C){

repeat
if (X → a •B d is in C &&

B is a non-terminal)
Add all configurations of

the form B → •g to C)
until (no more configurations

can be added);
return C;

}

292CS 536 Fall 2012©

Example of Closure
Assume we have the following
grammar:
S → A b
A → C D
C → D
C → c
D → d

To compute Closure(S → • A b)
we first include all productions
that rewrite A:

A → • C D
Now C productions are included:

C → • D

C → • c

293CS 536 Fall 2012©

Finally, the D production is added:

D → • d
The complete configuration set is:

S → • A b

A → • C D

C → • D

C → • c

D → • d
This set tells us that if we want to
match an A, we will need to
match a C, and this is done by
matching a c or d token.

294CS 536 Fall 2012©

Shift Operations
When we match a symbol (a
terminal or non-terminal), we shift
the “dot” past the symbol just
matched. Configurations that
don’t have a dot to the left of the
matched symbol are deleted
(since they didn’t correctly
anticipate the matched symbol).
The GoTo function computes an
updated configuration set after a
symbol is shifted:

ConfigSet GoTo(ConfigSet C,Symbol X){
B=φ;
for each configuration f in C{

if (f is of the form A → α•X δ)
Add A → α X •δ to B;

}
 return Closure(B);

}

295CS 536 Fall 2012©

For example, if C is
 S → • A b
A → • C D
C → • D
C → • c
D → • d

and X is C, then GoTo returns
A → C • D
D → • d

296CS 536 Fall 2012©

Reduce Actions
When the dot in a configuration
reaches the rightmost position,
we have matched an entire
righthand side. We are ready to
replace the righthand side
symbols with the lefthand side of
the production. The lefthand side
symbol can now be considered
matched.
If a configuration set can shift a
token and also reduce a
production, we have a potential
shift/reduce error.
If we can reduce more than one
production, we have a potential
reduce/reduce error.
How do we decide whether to do
a shift or reduce? How do we
choose among more than one
reduction?

297CS 536 Fall 2012©

We examine the next token to see
if it is consistent with the
potential reduce actions.
The simplest way to do this is to
use Follow sets, as we did in LL(1)
parsing.
If we have a configuration

A → α •

we will reduce this production
only if the current token, CT, is in
Follow(A).
This makes sense since if we
reduce α to A, we can’t correctly
match CT if CT can’t follow A.

298CS 536 Fall 2012©

Shift/Reduce and Reduce/
Reduce Errors

If we have a parse state that
contains the configurations

A → α •

B → β • a γ
and a in Follow(A) then there is an
unresolvable shift/reduce conflict.
This grammar can’t be parsed.
Similarly, if we have a parse state
that contains the configurations

A → α •

B → β •

and Follow(A) ∩ Follow(B) ≠ φ,
then the parser has an
unresolvable reduce/reduce
conflict. This grammar can’t be
parsed.

299CS 536 Fall 2012©

Building Parse States
All the manipulations needed to
build and complete configuration
sets suggest that parsing may be
slow—configuration sets need to
be updated after each token is
matched.
Fortunately, all the configuration
sets we ever will need can be
computed and tabled in advance,
when a tool like Java Cup builds a
parser.
The idea is simple. We first
compute an initial parse state, s0,
that corresponds to predicting
productions that expand the start
symbol. We then just compute
successor states for each token
that might be scanned. A
complete set of states can be
computed. For typical

300CS 536 Fall 2012©

programming language
grammars, only a few hundred
states are needed.
Here is the algorithm that builds a
complete set of parse states for a
grammar:

StateSet BuildStates(){
Let s0=Closure({S → •α, S → •β, ...});
C={s0};

while (not all states in C are marked){
Choose any unmarked state, s, in C
Mark s;
For each X in

terminals U nonterminals {
if (GoTo(s,X) is not in C)

Add GoTo(s,X) to C;
}
}
return C;

}

301CS 536 Fall 2012©

Configuration Sets for CSX-
Lite

State Cofiguration Set

s0 Prog → •{ Stmts } Eof

s1

Prog → { • Stmts } Eof
Stmts → •Stmt Stmts

Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s2 Prog → { Stmts •} Eof

s3

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts

Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s4 Stmt → id • = Expr ;

s5 Stmt → if • (Expr) Stmt

302CS 536 Fall 2012©

s6 Prog → { Stmts } •Eof

s7 Stmts → Stmt Stmts •

s8

Stmt → id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s9

Stmt → if (• Expr) Stmt

Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s10 Prog → { Stmts } Eof •

s11
Stmt → id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

s12 Expr → id •

s13
Stmt → if (Expr •) Stmt

Expr → Expr • + id
Expr → Expr • - id

State Cofiguration Set

303CS 536 Fall 2012©

s14 Stmt → id = Expr ; •

s15 Expr → Expr + • id

s16 Expr → Expr - • id

s17
Stmt → if (Expr) • Stmt
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s18 Expr → Expr + id •

s19 Expr → Expr - id •

s20 Stmt → if (Expr) Stmt •

State Cofiguration Set

304CS 536 Fall 2012©

Parser Action Table
We will table possible parser
actions based on the current state
(configuration set) and token.
Given configuration set C and
input token T four actions are
possible:
• Reduce i: The i-th production has

been matched.
• Shift: Match the current token.
• Accept: Parse is correct and

complete.
• Error: A syntax error has been

discovered.

305CS 536 Fall 2012©

We will let A[C][T] represent the
possible parser actions given
configuration set C and input
token T.
A[C][T] =

{Reduce i | i-th production is A→ α
and A → α • is in C
and T in Follow(A) }

U (If (B → β • T γ is in C)
{Shift} else φ)

This rule simply collects all the
actions that a parser might do
given C and T.
But we want parser actions to be
unique so we require that the
parser action always be unique
for any C and T.

306CS 536 Fall 2012©

If the parser action isn’t unique,
then we have a shift/reduce error
or reduce/reduce error. The
grammar is then rejected as
unparsable.
If parser actions are always
unique then we will consider a
shift of EOF to be an accept
action.
An empty (or undefined) action
for C and T will signify that token
T is illegal given configuration set
C.
A syntax error will be signaled.

307CS 536 Fall 2012©

LALR Parser Driver
Given the GoTo and parser action
tables, a Shift/Reduce (LALR)
parser is fairly simple:

void LALRDriver(){
 Push(S0);

while(true){
//Let S = Top state on parse stack
//Let CT = current token to match

switch (A[S][CT]) {
case error:

SyntaxError(CT);return;
case accept:

return;
case shift:

push(GoTo[S][CT]);
CT= Scanner();
break;

case reduce i:
//Let prod i = A→Y1...Ym
pop m states;
//Let S’ = new top state
push(GoTo[S’][A]);
break;

} } }

308CS 536 Fall 2012©

Action Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ S

} R3 S R3 R2 R4 R5

if S S R4 S R5

(S

) R8 S R6 R7

id S S S S R4 S S S

= S

+ S R8 S R6 R7

- S R8 S R6 R7

; S R8 R6 R7 R5

eof A

309CS 536 Fall 2012©

GoTo Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ 1

} 6

if 5 5 5

(9

) 17

id 4 4 12 12 18 19 4

= 8

+ 15 15

- 16 16

; 14

eof 10

stmts 2 7

stmt 3 3

expr 11 13

310CS 536 Fall 2012©

Example of LALR(1) Parsing
We’ll again parse
{ a = b + c; } Eof

We start by pushing state 0 on the
parse stack.

Parse
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { a = b + c; } Eof

1

0

Prog → { • Stmts } Eof
Stmts → • Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)

Shift a = b + c; } Eof

4

1

0

Stmt → id • = Expr ; = b + c; } Eof

8

4

1

0

Stmt → id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

Shift b + c; } Eof

311CS 536 Fall 2012©

12

8

4

1

0

Expr → id • Reduce 8 + c; } Eof

11

8

4

1

0

Stmt → id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift + c; } Eof

15

11

8

4

1

0

Expr → Expr + • id Shift c; } Eof

Parse
Stack Top State Action Remaining Input

312CS 536 Fall 2012©

18

15

11

8

4

1

0

Expr → Expr + id • Reduce 6 ; } Eof

11

8

4

1

0

Stmt → id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift ; } Eof

14

11

8

4

1

0

Stmt → id = Expr ; • Reduce 4 } Eof

Parse
Stack Top State Action Remaining Input

313CS 536 Fall 2012©

3

1

0

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)
Stmt

Reduce 3 } Eof

7

3

1

0

Stmts → Stmt Stmts • Reduce 2 } Eof

2

1

0

Prog → { Stmts •} Eof Shift } Eof

6

2

1

0

Prog → { Stmts } •Eof Accept Eof

Parse
Stack Top State Action Remaining Input

314CS 536 Fall 2012©

Error Detection in LALR
Parsers

In bottom-up, LALR parsers
syntax errors are discovered
when a blank (error) entry is
fetched from the parser action
table.
Let’s again trace how the
following illegal CSX-lite program
is parsed:
{ b + c = a; } Eof

315CS 536 Fall 2012©

Parse
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { b + c = a; } Eof

1

0

Prog → { • Stmts } Eof
Stmts → • Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)

Shift b + c = a; } Eof

4

1

0

Stmt → id • = Expr ; Error
(blank)

+ c = a; } Eof

