
301CS 536  Fall 2012©

Configuration Sets for CSX-
Lite

State Cofiguration Set

s0 Prog → •{ Stmts } Eof

s1

Prog → { • Stmts } Eof
Stmts → •Stmt Stmts

Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) Stmt

s2 Prog → { Stmts •} Eof

s3

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts

Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) Stmt

s4 Stmt →  id • = Expr ;

s5 Stmt →  if • ( Expr ) Stmt



302CS 536  Fall 2012©

s6 Prog → { Stmts } •Eof

s7 Stmts → Stmt Stmts •

s8

Stmt →  id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s9

Stmt →  if  ( • Expr ) Stmt

Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s10 Prog → { Stmts } Eof •

s11
Stmt →  id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

s12 Expr → id •

s13
Stmt →  if  ( Expr •) Stmt

Expr → Expr • + id
Expr → Expr • - id

State Cofiguration Set



303CS 536  Fall 2012©

s14 Stmt →  id = Expr ; •

s15 Expr → Expr + • id

s16 Expr → Expr - • id

s17
Stmt →  if  ( Expr ) • Stmt
Stmt → • id = Expr ;
Stmt → • if ( Expr ) Stmt

s18 Expr → Expr + id •

s19 Expr → Expr - id •

s20 Stmt →  if  ( Expr ) Stmt •

State Cofiguration Set



304CS 536  Fall 2012©

Parser Action Table
We will table possible parser
actions based on the current state
(configuration set) and token.
Given configuration set C and
input token T four actions are
possible:
• Reduce i: The i-th production has

been matched.
• Shift: Match the current token.
• Accept: Parse is correct and

complete.
• Error: A syntax error has been

discovered.



305CS 536  Fall 2012©

We will let A[C][T] represent the
possible parser actions given
configuration set C and input
token T.
A[C][T] =

{Reduce i | i-th production is A→ α
and A → α • is in C
and T in Follow(A) }

U (If (B → β • T γ is in C)
{Shift} else φ)

This rule simply collects all the
actions that a parser might do
given C and T.
But we want parser actions to be
unique so we require that the
parser action always be unique
for any C and T.



306CS 536  Fall 2012©

If the parser action isn’t unique,
then we have a shift/reduce error
or reduce/reduce error. The
grammar is then rejected as
unparsable.
If parser actions are always
unique then we will consider a
shift of EOF to be an accept
action.
An empty (or undefined) action
for C and T will signify that token
T is illegal given configuration set
C.
A syntax error will be signaled.



307CS 536  Fall 2012©

LALR Parser Driver
Given the GoTo and parser action
tables, a Shift/Reduce (LALR)
parser is fairly simple:

void LALRDriver(){
 Push(S0);

while(true){
//Let S = Top state on parse stack
//Let CT = current token to match

switch (A[S][CT]) {
case error:

SyntaxError(CT);return;
case accept:

return;
case shift:

push(GoTo[S][CT]);
CT= Scanner();
break;

case reduce i:
//Let prod i = A→Y1...Ym
pop m states;
//Let S’ = new top state
push(GoTo[S’][A]);
break;

} } }



308CS 536  Fall 2012©

Action Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ S

} R3 S R3 R2 R4 R5

if S S R4 S R5

( S

) R8 S R6 R7

id S S S S R4 S S S

= S

+ S R8 S R6 R7

- S R8 S R6 R7

; S R8 R6 R7 R5

eof A



309CS 536  Fall 2012©

GoTo Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ 1

} 6

if 5 5 5

( 9

) 17

id 4 4 12 12 18 19 4

= 8

+ 15 15

- 16 16

; 14

eof 10

stmts 2 7

stmt 3 3

expr 11 13



310CS 536  Fall 2012©

Example of LALR(1) Parsing
We’ll again parse
{ a = b + c; } Eof

We start by pushing state 0 on the
parse stack.

Parse
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { a = b + c; } Eof

1

0

Prog → { • Stmts } Eof
Stmts → • Stmt  Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr )

Shift  a = b + c; } Eof

4

1

0

Stmt →  id • = Expr ;  = b + c; } Eof

8

4

1

0

Stmt →  id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

Shift  b + c; } Eof



311CS 536  Fall 2012©

12

8

4

1

0

Expr → id • Reduce 8 + c; } Eof

11

8

4

1

0

Stmt →  id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift  + c; } Eof

15

11

8

4

1

0

Expr → Expr + • id Shift  c; } Eof

Parse
Stack Top State Action Remaining Input



312CS 536  Fall 2012©

18

15

11

8

4

1

0

Expr → Expr + id • Reduce 6  ; } Eof

11

8

4

1

0

Stmt →  id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift  ; } Eof

14

11

8

4

1

0

Stmt →  id = Expr ; • Reduce 4  } Eof

Parse
Stack Top State Action Remaining Input



313CS 536  Fall 2012©

3

1

0

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr )
Stmt

Reduce 3  } Eof

7

3

1

0

Stmts → Stmt Stmts • Reduce 2  } Eof

2

1

0

Prog → { Stmts •} Eof Shift  } Eof

6

2

1

0

Prog → { Stmts } •Eof Accept  Eof

Parse
Stack Top State Action Remaining Input



314CS 536  Fall 2012©

Error Detection in LALR
Parsers

In bottom-up, LALR parsers
syntax errors are discovered
when a blank (error) entry is
fetched from the parser action
table.
Let’s again trace how the
following illegal CSX-lite program
is parsed:
{ b + c = a; } Eof



315CS 536  Fall 2012©

Parse
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { b + c = a; } Eof

1

0

Prog → { • Stmts } Eof
Stmts → • Stmt  Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr )

Shift b + c = a; } Eof

4

1

0

Stmt →  id • = Expr ; Error
(blank)

+ c = a; } Eof



316CS 536  Fall 2012©

LALR is More Powerful
Essentially all LL(1) grammars are
LALR(1) plus many more.
Grammar constructs that confuse
LL(1) are readily handled.
• Common prefixes are no problem.

Since sets of configurations are
tracked, more than one prefix can
be followed. For example, in

Stmt →  id = Expr ;
Stmt →  id ( Args ) ;

after we match an id we have

Stmt →  id • = Expr ;
Stmt →  id • ( Args ) ;

The next token will tell us which
production to use.



317CS 536  Fall 2012©

• Left recursion is also not a
problem. Since sets of
configurations are tracked, we can
follow a left-recursive production
and all others it might use. For
example, in

Expr → • Expr + id
Expr → • id

we can first match an id:

Expr →  id •

Then the Expr is recognized:

Expr →  Expr • + id

The left-recursion is handled!



318CS 536  Fall 2012©

• But ambiguity will still block
construction of an LALR parser.
Some shift/reduce or reduce/
reduce conflict must appear. (Since
two or more distinct parses are
possible for some input).
Consider our original productions
for if-then and if-then-else
statements:

Stmt → if ( Expr ) Stmt •

Stmt →  if ( Expr ) Stmt • else Stmt

Since else can follow Stmt, we
have an unresolvable shift/reduce
conflict.



319CS 536  Fall 2012©

Grammar Engineering
Though LALR grammars are very
general and inclusive, sometimes
a reasonable set of productions is
rejected due to shift/reduce or
reduce/reduce conflicts.
In such cases, the grammar may
need to be “engineered” to allow
the parser to operate.
A good example of this is the
definition of MemberDecls in CSX.
A straightforward definition is

MemberDecls → FieldDecls MethodDecls
 FieldDecls →  FieldDecl FieldDecls
 FieldDecls → λ
MethodDecls →  MethodDecl MethodDecls

 MethodDecls → λ
FieldDecl →  int id ;
MethodDecl →  int id ( ) ; Body



320CS 536  Fall 2012©

When we predict MemberDecls we
get:

MemberDecls → • FieldDecls MethodDecls
 FieldDecls → • FieldDecl FieldDecls
 FieldDecls → λ•
FieldDecl → • int id ;

Now int follows FieldDecls since
MethodDecls ⇒+ int ...
Thus an unresolvable shift/reduce
conflict exists.
The problem is that int is
derivable from both FieldDecls
and MethodDecls, so when we see
an int, we can’t tell which way to
parse it (and FieldDecls → λ
requires we make an immediate
decision!).



321CS 536  Fall 2012©

If we rewrite the grammar so that
we can delay deciding from where
the int was generated, a valid
LALR parser can be built:

MemberDecls → FieldDecl MemberDecls
MemberDecls →  MethodDecls
MethodDecls →  MethodDecl MethodDecls

 MethodDecls → λ
FieldDecl →  int id ;
MethodDecl →  int id ( ) ; Body

When MemberDecls is predicted
we have
MemberDecls → • FieldDecl MemberDecls
MemberDecls → • MethodDecls
MethodDecls → •MethodDecl MethodDecls
MethodDecls → λ •

FieldDecl → • int id ;
MethodDecl → • int id ( ) ; Body



322CS 536  Fall 2012©

Now Follow(MethodDecls) =
Follow(MemberDecls) = “}”, so we
have no shift/reduce conflict.
After int id is matched, the next
token (a “;” or a “(“) will tell us
whether a FieldDecl or a
MethodDecl is being matched.



323CS 536  Fall 2012©

Properties of LL and LALR
Parsers
• Each prediction or reduce action is

guaranteed correct. Hence the entire
parse (built from LL predictions or
LALR reductions) must be correct.

This follows from the fact that LL
parsers allow only one valid prediction
per step. Similarly, an LALR parser
never skips a reduction if it is
consistent with the current token (and
all possible reductions are tracked).



324CS 536  Fall 2012©

• LL and LALR parsers detect an syntax
error as soon as the first invalid token
is seen.

Neither parser can match an invalid
program prefix. If a token is matched
it must be part of a valid program
prefix. In fact, the prediction made or
the stacked configuration sets show a
possible derivation of the token
accepted so far.

• All LL and LALR grammars are
unambiguous.

LL predictions are always unique and
LALR shift/reduce or reduce/reduce
conflicts are disallowed. Hence only
one valid derivation of any token
sequence is possible.



325CS 536  Fall 2012©

• All LL and LALR parsers require only
linear time and space (in terms of the
number of tokens parsed).

The parsers do only fixed work per
node of the concrete parse tree, and
the size of this tree is linear in terms
of the number of leaves in it (even
with λ-productions included!).


