
386CS 536 Fall 2012©

Accessing Frames at Run-Time
During execution there can be
many frames on the stack. When a
procedure A calls a procedure B, a
frame for B’s local variables is
pushed on the stack, covering A’s
frame. A’s frame can’t be popped
off because A will resume
execution after B returns.
For recursive routines there can
be hundreds or even thousands of
frames on the stack. All frames
but the topmost represent
suspended subroutines, waiting
for a call to return.
The topmost frame is active; it is
important to access it directly.
The active frame is at the top of
the stack, so the stack top
register could be used to access
it.

387CS 536 Fall 2012©

The run-time stack may also be
used to hold data other than
frames.
It is unwise to require that the
currently active frame always be
at exactly the top of the stack.
Instead a distinct register, often
called the frame pointer, is used
to access the current frame.
This allows local variables to be
accessed directly as offset +
frame pointer, using the indexed
addressing mode found on all
modern machines.

388CS 536 Fall 2012©

Consider the following recursive
function that computes factorials.
int fact(int n) {

if (n > 1)

return n * fact(n-1);

else

return 1;

}

389CS 536 Fall 2012©

The run-time stack
corresponding to the call
fact(3) (when the call of
fact(1) is about to return) is:

We place a slot for the function’s
return value at the very beginning
of the frame.
Upon return, the return value is
conveniently placed on the stack,
just beyond the end of the caller’s
frame. Often compilers return
scalar values in specially

Control Information

Space for n = 3

Return Value

Control Information

Space for n = 1

Return Value = 1

Control Information

Space for n = 2

Return Value

Top of Stack

Frame Pointer

390CS 536 Fall 2012©

designated registers, eliminating
unnecessary loads and stores. For
values too large to fit in a register
(arrays or objects), the stack is
used.
When a method returns, its frame
is popped from the stack and the
frame pointer is reset to point to
the caller’s frame.
In simple cases this is done by
adjusting the frame pointer by the
size of the current frame.

391CS 536 Fall 2012©

Dynamic Links
Because the stack may contain
more than just frames (e.g.,
function return values or registers
saved across calls), it is common
to save the caller’s frame pointer
as part of the callee’s control
information.
Each frame points to its caller’s
frame on the stack. This pointer is
called a dynamic link because it
links a frame to its dynamic (run-
time) predecessor.

392CS 536 Fall 2012©

The run-time stack corresponding
to a call of fact(3), with
dynamic links included, is:

Dynamic Link = Null

Space for n = 3

Return Value

Dynamic Link

Space for n = 1

Return Value = 1

Dynamic Link

Space for n = 2

Return Value

Top of Stack

Frame Pointer

393CS 536 Fall 2012©

Classes and Objects
C, C++ and Java do not allow
procedures or methods to nest.
A procedure may not be declared
within another procedure.
This simplifies run-time data
access—all variables are either
global or local.
Global variables are statically
allocated. Local variables are part
of a single frame, accessed
through the frame pointer.
Java and C++ allow classes to
have member functions that have
direct access to instance
variables.

394CS 536 Fall 2012©

Consider:
class K {

int a;

int sum(){

int b;

return a+b;

} }

Each object that is an instance of
class K contains a member
function sum. Only one translation
of sum is created; it is shared by
all instances of K.
When sum executes it needs two
pointers to access local and
object-level data.
Local data, as usual, resides in a
frame on the run-time stack.

395CS 536 Fall 2012©

Data values for a particular
instance of K are accessed
through an object pointer (called
the this pointer in Java and
C++). When obj.sum() is called,
it is given an extra implicit
parameter that a pointer to obj.

When a+b is computed, b, a local
variable, is accessed directly
through the frame pointer. a, a
member of object obj, is
accessed indirectly through the
object pointer that is stored in the
frame (as all parameters to a
method are).

Object Pointer

Space for b

Control Information

Rest of Stack

Top of Stack

Frame Pointer

Space for a

Object Obj

396CS 536 Fall 2012©

C++ and Java also allow
inheritance via subclassing. A
new class can extend an existing
class, adding new fields and
adding or redefining methods.
A subclass D, of class C, maybe be
used in contexts expecting an
object of class C (e.g., in method
calls).
This is supported rather easily—
objects of class D always contain
a class C object within them.
If C has a field F within it, so does
D. The fields D declares are merely
appended at the end of the
allocations for C.
As a result, access to fields of C
within a class D object works
perfectly.

397CS 536 Fall 2012©

Handling Multiple Scopes
Many languages allow procedure
declarations to nest. Java now
allows classes to nest.
Procedure nesting can be very
useful, allowing a subroutine to
directly access another routine’s
locals and parameters.
Run-time data structures are
complicated because multiple
frames, corresponding to nested
procedure declarations, may need
to be accessed.

398CS 536 Fall 2012©

To see the difficulties, assume
that routines can nest in Java or C:
int p(int a){

int q(int b){

if (b < 0)

return q(-b);

else

return a+b;

}

return q(-10);

}

When q executes, it may access
not only its own frame, but also
that of p, in which it is nested.
If the depth of nesting is
unlimited, so is the number of
frames that must be accessible. In
practice, the level of nesting
actually seen is modest—usually
no greater than two or three.

399CS 536 Fall 2012©

Static Links
Two approaches are commonly
used to support access to
multiple frames. One approach
generalizes the idea of dynamic
links introduced earlier. Along
with a dynamic link, we’ll also
include a static link in the frame’s
control information area. The
static link points to the frame of
the procedure that statically
encloses the current procedure. If
a procedure is not nested within
any other procedure, its static link
is null.

400CS 536 Fall 2012©

The following illustrates static
links:

As usual, dynamic links always
point to the next frame down in
the stack. Static links always point
down, but they may skip past
many frames. They always point
to the most recent frame of the
routine that statically encloses the
current routine.

Dynamic Link = Null

Space for a

Dynamic Link

Space for b = 10

Dynamic Link

Space for b = -10

Top of Stack

Frame Pointer
Static Link

Static Link

Static Link = Null

401CS 536 Fall 2012©

In our example, the static links of
both of q’s frames point to p,
since it is p that encloses q’s
definition.
In evaluating the expression a+b
that q returns, b, being local to q,
is accessed directly through the
frame pointer. Variable a is local
to p, but also visible to q because
q nests within p. a is accessed by
extracting q’s static link, then
using that address (plus the
appropriate offset) to access a.

402CS 536 Fall 2012©

Displays
An alternative to using static links
to access frames of enclosing
routines is the use of a display.
A display generalizes our use of a
frame pointer. Rather than
maintaining a single register, we
maintain a set of registers which
comprise the display.
If procedure definitions nest n
deep (this can be easily
determined by examining a
program’s AST), we need n+1
display registers.
Each procedure definition is
tagged with a nesting level.
Procedures not nested within any
other routine are at level 0.
Procedures nested within only
one routine are at level 1, etc.

403CS 536 Fall 2012©

Frames for routines at level 0 are
always accessed using display
register D0. Those at level 1 are
always accessed using register
D1, etc.
Whenever a procedure r is
executing, we have direct access
to r’s frame plus the frames of all
routines that enclose r. Each of
these routines must be at a
different nesting level, and hence
will use a different display
register.

404CS 536 Fall 2012©

The following illustrates the use
of display registers:

Since q is at nesting level 1, its
frame is pointed to by D1. All of
q’s local variables, including b, are
at a fixed offset relative to D1.
Since p is at nesting level 0, its
frame and local variables are
accessed via D0. Each frame’s
control information area contains
a slot for the previous value of the
frame’s display register. A display
register is saved when a call

Dynamic Link = Null

Space for a

Dynamic Link

Space for b = 10

Dynamic Link

Space for b = -10

Top of Stack

Display D1
Previous D1

Previous D1

Previous D0 Display D0

405CS 536 Fall 2012©

begins and restored when the call
ends. A dynamic link is still
needed, because the previous
display values doesn’t always
point to the caller’s frame.
Not all compiler writers agree on
whether static links or displays
are better to use. Displays allow
direct access to all frames, and
thus make access to all visible
variables very efficient. However,
if nesting is deep, several
valuable registers may need to be
reserved. Static links are very
flexible, allowing unlimited
nesting of procedures. However,
access to non-local procedure
variables can be slowed by the
need to extract and follow static
links.

406CS 536 Fall 2012©

Heap Management
A very flexible storage allocation
mechanism is heap allocation.
Any number of data objects can
be allocated and freed in a
memory pool, called a heap.
Heap allocation is enormously
popular. Almost all non-trivial Java
and C programs use new or
malloc.

407CS 536 Fall 2012©

Heap Allocation
A request for heap space may be
explicit or implicit.
An explicit request involves a call
to a routine like new or malloc.
An explicit pointer to the newly
allocated space is returned.
Some languages allow the
creation of data objects of
unknown size. In Java, the +
operator is overloaded to
represent string catenation.
The expression Str1 + Str2
creates a new string representing
the catenation of strings Str1 and
Str2. There is no compile-time
bound on the sizes of Str1 and
Str2, so heap space must be
implicitly allocated to hold the
newly created string.

408CS 536 Fall 2012©

Whether allocation is explicit or
implicit, a heap allocator is
needed. This routine takes a size
parameter and examines unused
heap space to find space that
satisfies the request.
A heap block is returned. This
block must be big enough to
satisfy the space request, but it
may well be bigger.
Heaps blocks contain a header
field that contains the size of the
block as well as bookkeeping
information.
The complexity of heap allocation
depends in large measure on how
deallocation is done.
Initially, the heap is one large
block of unallocated memory.
Memory requests can be satisfied
by simply modifying an “end of

409CS 536 Fall 2012©

heap” pointer, very much as a
stack is pushed by modifying a
stack pointer.
Things get more involved when
previously allocated heap objects
are deallocated and reused.
Deallocated objects are stored for
future reuse on a free space list.
When a request for n bytes of
heap space is received, the heap
allocator must search the free
space list for a block of sufficient
size. There are many search
strategies that might be used:
• Best Fit

The free space list is searched for
the free block that matches most
closely the requested size. This
minimizes wasted heap space, the
search may be quite slow.

410CS 536 Fall 2012©

• First Fit
The first free heap block of
sufficient size is used. Unused
space within the block is split off
and linked as a smaller free space
block. This approach is fast, but
may “clutter” the beginning of the
free space list with a number of
blocks too small to satisfy most
requests.

• Next Fit
This is a variant of first fit in which
succeeding searches of the free
space list begin at the position
where the last search ended. The
idea is to “cycle through” the entire
free space list rather than always
revisiting free blocks at the head of
the list.

411CS 536 Fall 2012©

• Segregated Free Space Lists
There is no reason why we must
have only one free space list. An
alternative is to have several,
indexed by the size of the free
blocks they contain.

