
397CS 536 Fall 2012©

Handling Multiple Scopes
Many languages allow procedure
declarations to nest. Java now
allows classes to nest.
Procedure nesting can be very
useful, allowing a subroutine to
directly access another routine’s
locals and parameters.
Run-time data structures are
complicated because multiple
frames, corresponding to nested
procedure declarations, may need
to be accessed.

398CS 536 Fall 2012©

To see the difficulties, assume
that routines can nest in Java or C:
int p(int a){

int q(int b){

if (b < 0)

return q(-b);

else

return a+b;

}

return q(-10);

}

When q executes, it may access
not only its own frame, but also
that of p, in which it is nested.
If the depth of nesting is
unlimited, so is the number of
frames that must be accessible. In
practice, the level of nesting
actually seen is modest—usually
no greater than two or three.

399CS 536 Fall 2012©

Static Links
Two approaches are commonly
used to support access to
multiple frames. One approach
generalizes the idea of dynamic
links introduced earlier. Along
with a dynamic link, we’ll also
include a static link in the frame’s
control information area. The
static link points to the frame of
the procedure that statically
encloses the current procedure. If
a procedure is not nested within
any other procedure, its static link
is null.

400CS 536 Fall 2012©

The following illustrates static
links:

As usual, dynamic links always
point to the next frame down in
the stack. Static links always point
down, but they may skip past
many frames. They always point
to the most recent frame of the
routine that statically encloses the
current routine.

Dynamic Link = Null

Space for a

Dynamic Link

Space for b = 10

Dynamic Link

Space for b = -10

Top of Stack

Frame Pointer
Static Link

Static Link

Static Link = Null

401CS 536 Fall 2012©

In our example, the static links of
both of q’s frames point to p,
since it is p that encloses q’s
definition.
In evaluating the expression a+b
that q returns, b, being local to q,
is accessed directly through the
frame pointer. Variable a is local
to p, but also visible to q because
q nests within p. a is accessed by
extracting q’s static link, then
using that address (plus the
appropriate offset) to access a.

402CS 536 Fall 2012©

Displays
An alternative to using static links
to access frames of enclosing
routines is the use of a display.
A display generalizes our use of a
frame pointer. Rather than
maintaining a single register, we
maintain a set of registers which
comprise the display.
If procedure definitions nest n
deep (this can be easily
determined by examining a
program’s AST), we need n+1
display registers.
Each procedure definition is
tagged with a nesting level.
Procedures not nested within any
other routine are at level 0.
Procedures nested within only
one routine are at level 1, etc.

403CS 536 Fall 2012©

Frames for routines at level 0 are
always accessed using display
register D0. Those at level 1 are
always accessed using register
D1, etc.
Whenever a procedure r is
executing, we have direct access
to r’s frame plus the frames of all
routines that enclose r. Each of
these routines must be at a
different nesting level, and hence
will use a different display
register.

404CS 536 Fall 2012©

The following illustrates the use
of display registers:

Since q is at nesting level 1, its
frame is pointed to by D1. All of
q’s local variables, including b, are
at a fixed offset relative to D1.
Since p is at nesting level 0, its
frame and local variables are
accessed via D0. Each frame’s
control information area contains
a slot for the previous value of the
frame’s display register. A display
register is saved when a call

Dynamic Link = Null

Space for a

Dynamic Link

Space for b = 10

Dynamic Link

Space for b = -10

Top of Stack

Display D1
Previous D1

Previous D1

Previous D0 Display D0

405CS 536 Fall 2012©

begins and restored when the call
ends. A dynamic link is still
needed, because the previous
display values doesn’t always
point to the caller’s frame.
Not all compiler writers agree on
whether static links or displays
are better to use. Displays allow
direct access to all frames, and
thus make access to all visible
variables very efficient. However,
if nesting is deep, several
valuable registers may need to be
reserved. Static links are very
flexible, allowing unlimited
nesting of procedures. However,
access to non-local procedure
variables can be slowed by the
need to extract and follow static
links.

406CS 536 Fall 2012©

Heap Management
A very flexible storage allocation
mechanism is heap allocation.
Any number of data objects can
be allocated and freed in a
memory pool, called a heap.
Heap allocation is enormously
popular. Almost all non-trivial Java
and C programs use new or
malloc.

407CS 536 Fall 2012©

Heap Allocation
A request for heap space may be
explicit or implicit.
An explicit request involves a call
to a routine like new or malloc.
An explicit pointer to the newly
allocated space is returned.
Some languages allow the
creation of data objects of
unknown size. In Java, the +
operator is overloaded to
represent string catenation.
The expression Str1 + Str2
creates a new string representing
the catenation of strings Str1 and
Str2. There is no compile-time
bound on the sizes of Str1 and
Str2, so heap space must be
implicitly allocated to hold the
newly created string.

408CS 536 Fall 2012©

Whether allocation is explicit or
implicit, a heap allocator is
needed. This routine takes a size
parameter and examines unused
heap space to find space that
satisfies the request.
A heap block is returned. This
block must be big enough to
satisfy the space request, but it
may well be bigger.
Heaps blocks contain a header
field that contains the size of the
block as well as bookkeeping
information.
The complexity of heap allocation
depends in large measure on how
deallocation is done.
Initially, the heap is one large
block of unallocated memory.
Memory requests can be satisfied
by simply modifying an “end of

409CS 536 Fall 2012©

heap” pointer, very much as a
stack is pushed by modifying a
stack pointer.
Things get more involved when
previously allocated heap objects
are deallocated and reused.
Deallocated objects are stored for
future reuse on a free space list.
When a request for n bytes of
heap space is received, the heap
allocator must search the free
space list for a block of sufficient
size. There are many search
strategies that might be used:
• Best Fit

The free space list is searched for
the free block that matches most
closely the requested size. This
minimizes wasted heap space, the
search may be quite slow.

410CS 536 Fall 2012©

• First Fit
The first free heap block of
sufficient size is used. Unused
space within the block is split off
and linked as a smaller free space
block. This approach is fast, but
may “clutter” the beginning of the
free space list with a number of
blocks too small to satisfy most
requests.

• Next Fit
This is a variant of first fit in which
succeeding searches of the free
space list begin at the position
where the last search ended. The
idea is to “cycle through” the entire
free space list rather than always
revisiting free blocks at the head of
the list.

411CS 536 Fall 2012©

• Segregated Free Space Lists
There is no reason why we must
have only one free space list. An
alternative is to have several,
indexed by the size of the free
blocks they contain.

