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Java CUP
Java CUP is a parser- generation 
tool, similar to Yacc. 
CUP builds a Java parser for 
LALR(1) grammars from 
production rules and associated 
Java code fragments.
When a particular production is 
recognized, its associated code 
fragment is executed (typically to 
build an AST).
CUP generates a Java source file 
parser.java. It contains a class 
parser, with a method
Symbol parse()

The Symbol returned by the parser 
is associated with the grammar’s 
start symbol and contains the AST 
for the whole source program.
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The file sym.java is also built for 
use with a JLex- built scanner (so 
that both scanner and parser use 
the same token codes).
If an unrecovered syntax error 
occurs, Exception() is thrown by 
the parser.
CUP and Yacc accept exactly the 
same class of grammars—all LL(1) 
grammars, plus many useful non-
LL(1) grammars.
CUP is called as
java java_cup.Main < file.cup
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Java CUP Specifications
Java CUP specifications are of the 
form:
• Package and import specifications

• User code additions

• Terminal and non- terminal 
declarations

• A context- free grammar, 
augmented with Java code 
fragments

Package and Import Specifications
You define a package name as:
package name ;
You add imports to be used as:
import java_cup.runtime.*;
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User Code Additions
You may define Java code to be 
included within the generated 
parser:
action code {: /*java code */ :}
This code is placed within the 
generated action class (which 
holds user- specified production 
actions).
parser code {: /*java code */ :}
This code is placed within the 
generated parser class .
init with{: /*java code */ :}
This code is used to initialize the 
generated parser.
scan with{: /*java code */ :}
This code is used to tell the 
generated parser how to get 
tokens from the scanner.
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Terminal and Non-terminal 
Declarations

You define terminal symbols you 
will use as:
terminal classname name1, name2, ...

classname is a class used by the 
scanner for tokens (CSXToken, 
CSXIdentifierToken, etc.)

You define non- terminal symbols 
you will use as:
non terminal classname name1, name2, ...

classname is the class for the 
AST node associated with the 
non- terminal (stmtNode, 
exprNode, etc.)
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Production Rules
Production rules are of the form
name ::= name1 name2 ... action ;

or
name ::= name1 name2 ... 
action1

| name3 name4 ... action2
| ... 
;

Names are the names of terminals 
or non- terminals, as declared 
earlier.
Actions are Java code fragments, 
of the form 
{: /*java code */ :}
The Java object assocated with a 
symbol (a token or AST node) may 
be named by adding a :id suffix 
to a terminal or non- terminal in a 
rule.
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RESULT names the left- hand side 
non- terminal.
The Java classes of the symbols 
are defined in the terminal and 
non- terminal declaration 
sections.
For example, 
prog ::= LBRACE:l stmts:s RBRACE

{: RESULT =
new csxLiteNode(s, 
l.linenum,l.colnum); :}

This corresponds to the production
prog → { stmts }
The left brace is named l; the 
stmts non- terminal is called s.
In the action code, a new 
CSXLiteNode is created and 
assigned to prog. It is constructed 
from the AST node associated 
with s. Its line and column 
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numbers are those given to the 
left brace, l (by the scanner).

To tell CUP what non- terminal to 
use as the start symbol (prog in 
our example), we use the 
directive:
start with prog;
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Example
Let’s look at the CUP specification 
for CSX- lite. Recall its CFG is

program → {  stmts  }
stmts → stmt stmts 

| λ 
stmt → id  =  expr  ; 

 |  if ( expr  )  stmt  
expr → expr +  id 

| expr -  id 
| id 
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The corresponding CUP 
specification is:
/***
This Is A Java CUP Specification For 
CSX-lite, a Small Subset of The CSX 
Language,  Used In Cs536
 ***/

/* Preliminaries to set up and use the 
scanner.  */

import java_cup.runtime.*;
parser code {:
 public void syntax_error

(Symbol cur_token){
   report_error(

“CSX syntax error at line “+
String.valueOf(((CSXToken)

cur_token.value).linenum),
null);}

:};

init with {:              :};
scan with {:

return Scanner.next_token(); 
:};
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/* Terminals (tokens returned by the 
scanner). */
terminal CSXIdentifierToken IDENTIFIER;
terminal CSXToken SEMI, LPAREN, RPAREN, 
ASG, LBRACE, RBRACE;
terminal CSXToken PLUS, MINUS, rw_IF;

/* Non terminals */
non terminal csxLiteNode prog;
non terminal stmtsNode stmts;
non terminal stmtNode stmt;
non terminal exprNode exp;
non terminal nameNode ident;

start with prog;

prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s, 
l.linenum,l.colnum); :}

;

stmts::= stmt:s1  stmts:s2
 {: RESULT=

new stmtsNode(s1,s2, 
s1.linenum,s1.colnum);

 :}
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| 
 {: RESULT= stmtsNode.NULL; :}
;
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

| rw_IF:i LPAREN exp:e RPAREN  stmt:s
 {: RESULT=new ifThenNode(e,s, 

 stmtNode.NULL,
i.linenum,i.colnum); :}

;
exp::= 
exp:leftval PLUS:op ident:rightval

 {: RESULT=new binaryOpNode(leftval, 
sym.PLUS, rightval,
op.linenum,op.colnum); :}

| exp:leftval MINUS:op ident:rightval
 {: RESULT=new binaryOpNode(leftval, 

sym.MINUS,rightval,
op.linenum,op.colnum); :}

| ident:i
 {: RESULT = i; :}
;
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ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
  new identNode(i.identifierText,

 i.linenum,i.colnum),
  exprNode.NULL,
  i.linenum,i.colnum); :}
;
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Let’s parse

{ a = b ; }
First, a is parsed using 
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
  new identNode(i.identifierText,

 i.linenum,i.colnum),
  exprNode.NULL,

  i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
a
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Next, b is parsed using 
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
  new identNode(i.identifierText,

 i.linenum,i.colnum),
  exprNode.NULL,

  i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
b
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Then b’s subtree is recognized as 
an exp:
| ident:i
 {: RESULT = i; :}

Now the assignment statement is 
recognized:
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

We build

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode
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The stmts → λ production is 
matched (indicating that there are 
no more statements in the 
program).
CUP matches
stmts::= 
 {: RESULT= stmtsNode.NULL; :}

and we build

Next, 
stmts → stmt stmts 
is matched using
stmts::= stmt:s1  stmts:s2
 {: RESULT=

new stmtsNode(s1,s2, 
s1.linenum,s1.colnum);

 :}

nullStmtsNode

206CS 536  Spring 2015 ©

This builds

As the last step of the parse, the 
parser matches 
program → {  stmts  }
using the CUP rule
prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s, 
l.linenum,l.colnum); :}

;

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode
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The final AST reurned by the 
parser is

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

csxLiteNode
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Errors in Context-Free 
Grammars

Context- free grammars can 
contain errors, just as programs 
do. Some errors are easy to detect 
and fix; others are more subtle.
In context- free grammars we 
start with the start symbol, and 
apply productions until a terminal 
string is produced.
Some context- free grammars may 
contain useless non- terminals.
Non- terminals that are 
unreachable (from the start 
symbol) or that derive no terminal 
string are considered useless.
Useless non- terminals (and 
productions that involve them) 
can be safely removed from a 
grammar without changing the 
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language defined by the 
grammar.
A grammar containing useless 
non- terminals is said to be non-
reduced.
After useless non- terminals are 
removed, the grammar is reduced.
Consider

S → A B
|  x

B → b
A → a A
C → d

Which non- terminals are 
unreachable? Which derive no 
terminal string?
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Finding Useless Non-
terminals

To find non- terminals that can 
derive one or more terminal 
strings, we’ll use a marking 
algorithm.
We iteratively mark terminals that 
can derive a string of terminals, 
until no more non- terminals can 
be marked. Unmarked non-
terminals are useless.
(1) Mark all terminal symbols
(2) Repeat

If all symbols on the 
righthand side of a 
production are marked

Then mark the lefthand side
Until no more non- terminals

can be marked
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We can use a similar marking 
algorithm to determine which 
non- terminals can be reached 
from the start symbol:

(1) Mark the Start Symbol
(2) Repeat

If the lefthand side of a
production is marked

Then mark all non- terminals
in the righthand side

Until no more non- terminals
can be marked
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λ Derivations
When parsing, we’ll sometimes 
need to know which non-
terminals can derive λ. (λ is 
“invisible” and hence tricky to 
parse).
We can use the following marking 
algorithm to decide which non-
terminals derive λ
(1) For each production A → λ

mark A
(2) Repeat

If the entire righthand
side of a production
is marked

Then mark the lefthand side
Until no more non- terminals

can be marked
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As an example consider

S → A  B  C
A → a
B → C D
D → d

| λ
C → c

|  λ
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Recall that compilers prefer an 
unambiguous grammar because a 
unique parse tree structure can be 
guaranteed for all inputs.
Hence a unique translation, 
guided by the parse tree 
structure, will be obtained.
We would like an algorithm that 
checks if a grammar is 
ambiguous.
Unfortunately, it is undecidable 
whether a given CFG is 
ambiguous, so such an algorithm 
is impossible to create.
Fortunately for certain grammar 
classes, including those for which 
we can generate parsers, we can 
prove included grammars are 
unambiguous.
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Potentially, the most serious flaw 
that a grammar might have is that 
it generates the “wrong 
language."
This is a subtle point as a 
grammar serves as the definition 
of a language.
For established languages (like C 
or Java) there is usually a suite of 
programs created to test and 
validate new compilers. An 
incorrect grammar will almost 
certainly lead to incorrect 
compilations of test programs, 
which can be automatically 
recognized.
For new languages, initial 
implementors must thoroughly 
test the parser to verify that 
inputs are scanned and parsed as 
expected.
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Parsers and Recognizers
Given a sequence of tokens, we 
can ask:
"Is this input syntactically valid?" 
(Is it generable from the 
grammar?).
A program that answers this 
question is a recognizer.
Alternatively, we can ask:
"Is this input valid and, if it is, 
what is its structure (parse tree)?"
A program that answers this more 
general question is termed a 
parser.
We plan to use language structure 
to drive compilers, so we will be 
especially interested in parsers.
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Two general approaches to 
parsing exist.
The first approach is top- down.
A parser is top- down if it 
"discovers" the parse tree 
corresponding to a token 
sequence by starting at the top of 
the tree (the start symbol), and 
then expanding the tree (via 
predictions) in a depth- first 
manner.
Top- down parsing techniques are 
predictive in nature because they 
always predict the production that 
is to be matched before matching 
actually begins.
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Consider

E → E + T | T
T → T * id | id

To parse id + id in a top- down 
manner, a parser build a parse 
tree in the following steps:

E E

E + T

E

E + T

T
E

E + T

T

id

E

E + T

T

id id

⇒ ⇒ ⇒

⇒
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A wide variety of parsing 
techniques take a different 
approach.
They belong to the class of 
bottom- up parsers.
As the name suggests, bottom- up 
parsers discover the structure of a 
parse tree by beginning at its 
bottom (at the leaves of the tree 
which are terminal symbols) and 
determining the productions used 
to generate the leaves.
Then the productions used to 
generate the immediate parents 
of the leaves are discovered.
The parser continues until it 
reaches the production used to 
expand the start symbol.
At this point the entire parse tree 
has been determined.

220CS 536  Spring 2015 ©

A bottom- up parse of id1 + id2 
would follow the following steps:

E

E + T

T

id1 id2

⇒ ⇒

⇒

T

id1 T

id1

E

T

id2
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A Simple Top-Down Parser
We’ll build a rudimentary top-
down parser that simply tries each 
possible expansion of a non-
terminal, in order of production 
definition.
If an expansion leads to a token 
sequence that doesn’t match the 
current token being parsed, we 
backup and try the next possible 
production choice.
We stop when all the input tokens 
are correctly matched or when all 
possible production choices have 
been tried.
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Example
Given the productions

S → a
 | ( S )

we try a, then (a), then ((a)), etc.

Let’s next try an additional 
alternative:

S → a
 | ( S )

| ( S ]
Let’s try to parse a, then (a], then 
((a]], etc.
We’ll count the number of 
productions we try for each input.
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• For input =  a
We try S → a which works.
Matches needed =  1

• For input =  ( a ]
We try S → a which fails.
We next try S → ( S ).
We expand the inner S three 
different ways; all fail.
Finally, we try S → ( S ].
The inner S expands to a, which 
works.
Total matches tried =  
1 +  (1+ 3)+ (1+ 1)=  7.

• For input =  (( a ]]
We try S → a which fails.
We next try S → ( S ).
We match the inner S to (a] using 7 
steps, then fail to match the last ].
Finally, we try S → ( S ].
We match the inner S to (a] using 7 
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steps, then match the last ].
Total matches tried =  
1 +  (1+ 7)+ (1+ 7)=  17.

• For input =  ((( a ]]]
We try S → a which fails.
We next try S → ( S ).
We match the inner S to ((a]] using 
17 steps, then fail to match the last 
].
Finally, we try S → ( S ].
We match the inner S to ((a]] using 
17 steps, then match the last ].
Total matches tried =  

1 +  (1+ 17) +  (1+ 17) =  37.

Adding one extra ( ... ] pair doubles 
the number of matches we need to 
do the parse.

In fact to parse (ia]i takes 5*2i- 3 
matches. This is exponential growth!
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With a more effective dynamic 
programming approach, in which 
results of intermediate parsing steps 
are cached, we can reduce the 
number of matches needed to n3 for 
an input with n tokens.
Is this acceptable?
No!
Typical source programs have at 
least 1000 tokens, and 10003 =  109 
is a lot of steps, even for a fast 
modern computer.
The solution?
—Smarter selection in the choice of 
productions we try.

226CS 536  Spring 2015 ©

Reading Assignment
Read Chapter 5 of
Crafting a Compiler, Second 
Edition.
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Prediction
We want to avoid trying 
productions that can’t possibly 
work. 
For example, if the current token 
to be parsed is an identifier, it is 
useless to try a production that 
begins with an integer literal. 
Before we try a production, we’ll 
consider the set of terminals it 
might initially produce. If the 
current token is in this set, we’ll 
try the production.
If it isn’t, there is no way the 
production being considered 
could be part of the parse, so 
we’ll ignore it.
A predict function tells us the set 
of tokens that might be initially 
generated from any production.
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For A → X1...Xn, Predict(A → 
X1...Xn) =  Set of all initial (first) 
tokens derivable from A → X1...Xn 

=  {a in Vt |  A → X1...Xn ⇒* a...}

For example, given
Stmt → Label id  = Expr  ;

|  Label if Expr then Stmt ;
| Label read ( IdList ) ;
| Label id ( Args ) ;

Label → intlit :
| λ

Production Predict Set

Stmt → Label id = Expr ; {id, intlit}

Stmt → Label  if Expr then Stmt ; {if, intlit}

Stmt → Label read ( IdList ) ; {read, intlit}

Stmt → Label id ( Args ) ; {id, intlit}


