
189CS 536 Spring 2015 ©

Java CUP
Java CUP is a parser- generation
tool, similar to Yacc.
CUP builds a Java parser for
LALR(1) grammars from
production rules and associated
Java code fragments.
When a particular production is
recognized, its associated code
fragment is executed (typically to
build an AST).
CUP generates a Java source file
parser.java. It contains a class
parser, with a method
Symbol parse()

The Symbol returned by the parser
is associated with the grammar’s
start symbol and contains the AST
for the whole source program.

190CS 536 Spring 2015 ©

The file sym.java is also built for
use with a JLex- built scanner (so
that both scanner and parser use
the same token codes).
If an unrecovered syntax error
occurs, Exception() is thrown by
the parser.
CUP and Yacc accept exactly the
same class of grammars—all LL(1)
grammars, plus many useful non-
LL(1) grammars.
CUP is called as
java java_cup.Main < file.cup

191CS 536 Spring 2015 ©

Java CUP Specifications
Java CUP specifications are of the
form:
• Package and import specifications

• User code additions

• Terminal and non- terminal
declarations

• A context- free grammar,
augmented with Java code
fragments

Package and Import Specifications
You define a package name as:
package name ;
You add imports to be used as:
import java_cup.runtime.*;

192CS 536 Spring 2015 ©

User Code Additions
You may define Java code to be
included within the generated
parser:
action code {: /*java code */ :}
This code is placed within the
generated action class (which
holds user- specified production
actions).
parser code {: /*java code */ :}
This code is placed within the
generated parser class .
init with{: /*java code */ :}
This code is used to initialize the
generated parser.
scan with{: /*java code */ :}
This code is used to tell the
generated parser how to get
tokens from the scanner.

193CS 536 Spring 2015 ©

Terminal and Non-terminal
Declarations

You define terminal symbols you
will use as:
terminal classname name1, name2, ...

classname is a class used by the
scanner for tokens (CSXToken,
CSXIdentifierToken, etc.)

You define non- terminal symbols
you will use as:
non terminal classname name1, name2, ...

classname is the class for the
AST node associated with the
non- terminal (stmtNode,
exprNode, etc.)

194CS 536 Spring 2015 ©

Production Rules
Production rules are of the form
name ::= name1 name2 ... action ;

or
name ::= name1 name2 ...
action1

| name3 name4 ... action2
| ...
;

Names are the names of terminals
or non- terminals, as declared
earlier.
Actions are Java code fragments,
of the form
{: /*java code */ :}
The Java object assocated with a
symbol (a token or AST node) may
be named by adding a :id suffix
to a terminal or non- terminal in a
rule.

195CS 536 Spring 2015 ©

RESULT names the left- hand side
non- terminal.
The Java classes of the symbols
are defined in the terminal and
non- terminal declaration
sections.
For example,
prog ::= LBRACE:l stmts:s RBRACE

{: RESULT =
new csxLiteNode(s,
l.linenum,l.colnum); :}

This corresponds to the production
prog → { stmts }
The left brace is named l; the
stmts non- terminal is called s.
In the action code, a new
CSXLiteNode is created and
assigned to prog. It is constructed
from the AST node associated
with s. Its line and column

196CS 536 Spring 2015 ©

numbers are those given to the
left brace, l (by the scanner).

To tell CUP what non- terminal to
use as the start symbol (prog in
our example), we use the
directive:
start with prog;

197CS 536 Spring 2015 ©

Example
Let’s look at the CUP specification
for CSX- lite. Recall its CFG is

program → { stmts }
stmts → stmt stmts

| λ
stmt → id = expr ;

 | if (expr) stmt
expr → expr + id

| expr - id
| id

198CS 536 Spring 2015 ©

The corresponding CUP
specification is:
/***
This Is A Java CUP Specification For
CSX-lite, a Small Subset of The CSX
Language, Used In Cs536
 ***/

/* Preliminaries to set up and use the
scanner. */

import java_cup.runtime.*;
parser code {:
 public void syntax_error

(Symbol cur_token){
 report_error(

“CSX syntax error at line “+
String.valueOf(((CSXToken)

cur_token.value).linenum),
null);}

:};

init with {: :};
scan with {:

return Scanner.next_token();
:};

199CS 536 Spring 2015 ©

/* Terminals (tokens returned by the
scanner). */
terminal CSXIdentifierToken IDENTIFIER;
terminal CSXToken SEMI, LPAREN, RPAREN,
ASG, LBRACE, RBRACE;
terminal CSXToken PLUS, MINUS, rw_IF;

/* Non terminals */
non terminal csxLiteNode prog;
non terminal stmtsNode stmts;
non terminal stmtNode stmt;
non terminal exprNode exp;
non terminal nameNode ident;

start with prog;

prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

stmts::= stmt:s1 stmts:s2
 {: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

 :}

200CS 536 Spring 2015 ©

|
 {: RESULT= stmtsNode.NULL; :}
;
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

| rw_IF:i LPAREN exp:e RPAREN stmt:s
 {: RESULT=new ifThenNode(e,s,

 stmtNode.NULL,
i.linenum,i.colnum); :}

;
exp::=
exp:leftval PLUS:op ident:rightval

 {: RESULT=new binaryOpNode(leftval,
sym.PLUS, rightval,
op.linenum,op.colnum); :}

| exp:leftval MINUS:op ident:rightval
 {: RESULT=new binaryOpNode(leftval,

sym.MINUS,rightval,
op.linenum,op.colnum); :}

| ident:i
 {: RESULT = i; :}
;

201CS 536 Spring 2015 ©

ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
 new identNode(i.identifierText,

 i.linenum,i.colnum),
 exprNode.NULL,
 i.linenum,i.colnum); :}
;

202CS 536 Spring 2015 ©

Let’s parse

{ a = b ; }
First, a is parsed using
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
 new identNode(i.identifierText,

 i.linenum,i.colnum),
 exprNode.NULL,

 i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
a

203CS 536 Spring 2015 ©

Next, b is parsed using
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
 new identNode(i.identifierText,

 i.linenum,i.colnum),
 exprNode.NULL,

 i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
b

204CS 536 Spring 2015 ©

Then b’s subtree is recognized as
an exp:
| ident:i
 {: RESULT = i; :}

Now the assignment statement is
recognized:
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

We build

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

205CS 536 Spring 2015 ©

The stmts → λ production is
matched (indicating that there are
no more statements in the
program).
CUP matches
stmts::=
 {: RESULT= stmtsNode.NULL; :}

and we build

Next,
stmts → stmt stmts
is matched using
stmts::= stmt:s1 stmts:s2
 {: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

 :}

nullStmtsNode

206CS 536 Spring 2015 ©

This builds

As the last step of the parse, the
parser matches
program → { stmts }
using the CUP rule
prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

207CS 536 Spring 2015 ©

The final AST reurned by the
parser is

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

csxLiteNode

208CS 536 Spring 2015 ©

Errors in Context-Free
Grammars

Context- free grammars can
contain errors, just as programs
do. Some errors are easy to detect
and fix; others are more subtle.
In context- free grammars we
start with the start symbol, and
apply productions until a terminal
string is produced.
Some context- free grammars may
contain useless non- terminals.
Non- terminals that are
unreachable (from the start
symbol) or that derive no terminal
string are considered useless.
Useless non- terminals (and
productions that involve them)
can be safely removed from a
grammar without changing the

209CS 536 Spring 2015 ©

language defined by the
grammar.
A grammar containing useless
non- terminals is said to be non-
reduced.
After useless non- terminals are
removed, the grammar is reduced.
Consider

S → A B
| x

B → b
A → a A
C → d

Which non- terminals are
unreachable? Which derive no
terminal string?

210CS 536 Spring 2015 ©

Finding Useless Non-
terminals

To find non- terminals that can
derive one or more terminal
strings, we’ll use a marking
algorithm.
We iteratively mark terminals that
can derive a string of terminals,
until no more non- terminals can
be marked. Unmarked non-
terminals are useless.
(1) Mark all terminal symbols
(2) Repeat

If all symbols on the
righthand side of a
production are marked

Then mark the lefthand side
Until no more non- terminals

can be marked

211CS 536 Spring 2015 ©

We can use a similar marking
algorithm to determine which
non- terminals can be reached
from the start symbol:

(1) Mark the Start Symbol
(2) Repeat

If the lefthand side of a
production is marked

Then mark all non- terminals
in the righthand side

Until no more non- terminals
can be marked

212CS 536 Spring 2015 ©

λ Derivations
When parsing, we’ll sometimes
need to know which non-
terminals can derive λ. (λ is
“invisible” and hence tricky to
parse).
We can use the following marking
algorithm to decide which non-
terminals derive λ
(1) For each production A → λ

mark A
(2) Repeat

If the entire righthand
side of a production
is marked

Then mark the lefthand side
Until no more non- terminals

can be marked

213CS 536 Spring 2015 ©

As an example consider

S → A B C
A → a
B → C D
D → d

| λ
C → c

| λ

214CS 536 Spring 2015 ©

Recall that compilers prefer an
unambiguous grammar because a
unique parse tree structure can be
guaranteed for all inputs.
Hence a unique translation,
guided by the parse tree
structure, will be obtained.
We would like an algorithm that
checks if a grammar is
ambiguous.
Unfortunately, it is undecidable
whether a given CFG is
ambiguous, so such an algorithm
is impossible to create.
Fortunately for certain grammar
classes, including those for which
we can generate parsers, we can
prove included grammars are
unambiguous.

215CS 536 Spring 2015 ©

Potentially, the most serious flaw
that a grammar might have is that
it generates the “wrong
language."
This is a subtle point as a
grammar serves as the definition
of a language.
For established languages (like C
or Java) there is usually a suite of
programs created to test and
validate new compilers. An
incorrect grammar will almost
certainly lead to incorrect
compilations of test programs,
which can be automatically
recognized.
For new languages, initial
implementors must thoroughly
test the parser to verify that
inputs are scanned and parsed as
expected.

216CS 536 Spring 2015 ©

Parsers and Recognizers
Given a sequence of tokens, we
can ask:
"Is this input syntactically valid?"
(Is it generable from the
grammar?).
A program that answers this
question is a recognizer.
Alternatively, we can ask:
"Is this input valid and, if it is,
what is its structure (parse tree)?"
A program that answers this more
general question is termed a
parser.
We plan to use language structure
to drive compilers, so we will be
especially interested in parsers.

217CS 536 Spring 2015 ©

Two general approaches to
parsing exist.
The first approach is top- down.
A parser is top- down if it
"discovers" the parse tree
corresponding to a token
sequence by starting at the top of
the tree (the start symbol), and
then expanding the tree (via
predictions) in a depth- first
manner.
Top- down parsing techniques are
predictive in nature because they
always predict the production that
is to be matched before matching
actually begins.

218CS 536 Spring 2015 ©

Consider

E → E + T | T
T → T * id | id

To parse id + id in a top- down
manner, a parser build a parse
tree in the following steps:

E E

E + T

E

E + T

T
E

E + T

T

id

E

E + T

T

id id

⇒ ⇒ ⇒

⇒

219CS 536 Spring 2015 ©

A wide variety of parsing
techniques take a different
approach.
They belong to the class of
bottom- up parsers.
As the name suggests, bottom- up
parsers discover the structure of a
parse tree by beginning at its
bottom (at the leaves of the tree
which are terminal symbols) and
determining the productions used
to generate the leaves.
Then the productions used to
generate the immediate parents
of the leaves are discovered.
The parser continues until it
reaches the production used to
expand the start symbol.
At this point the entire parse tree
has been determined.

220CS 536 Spring 2015 ©

A bottom- up parse of id1 + id2
would follow the following steps:

E

E + T

T

id1 id2

⇒ ⇒

⇒

T

id1 T

id1

E

T

id2

221CS 536 Spring 2015 ©

A Simple Top-Down Parser
We’ll build a rudimentary top-
down parser that simply tries each
possible expansion of a non-
terminal, in order of production
definition.
If an expansion leads to a token
sequence that doesn’t match the
current token being parsed, we
backup and try the next possible
production choice.
We stop when all the input tokens
are correctly matched or when all
possible production choices have
been tried.

222CS 536 Spring 2015 ©

Example
Given the productions

S → a
 | (S)

we try a, then (a), then ((a)), etc.

Let’s next try an additional
alternative:

S → a
 | (S)

| (S]
Let’s try to parse a, then (a], then
((a]], etc.
We’ll count the number of
productions we try for each input.

223CS 536 Spring 2015 ©

• For input = a
We try S → a which works.
Matches needed = 1

• For input = (a]
We try S → a which fails.
We next try S → (S).
We expand the inner S three
different ways; all fail.
Finally, we try S → (S].
The inner S expands to a, which
works.
Total matches tried =
1 + (1+ 3)+ (1+ 1)= 7.

• For input = ((a]]
We try S → a which fails.
We next try S → (S).
We match the inner S to (a] using 7
steps, then fail to match the last].
Finally, we try S → (S].
We match the inner S to (a] using 7

224CS 536 Spring 2015 ©

steps, then match the last].
Total matches tried =
1 + (1+ 7)+ (1+ 7)= 17.

• For input = (((a]]]
We try S → a which fails.
We next try S → (S).
We match the inner S to ((a]] using
17 steps, then fail to match the last
].
Finally, we try S → (S].
We match the inner S to ((a]] using
17 steps, then match the last].
Total matches tried =

1 + (1+ 17) + (1+ 17) = 37.

Adding one extra (...] pair doubles
the number of matches we need to
do the parse.

In fact to parse (ia]i takes 5*2i- 3
matches. This is exponential growth!

225CS 536 Spring 2015 ©

With a more effective dynamic
programming approach, in which
results of intermediate parsing steps
are cached, we can reduce the
number of matches needed to n3 for
an input with n tokens.
Is this acceptable?
No!
Typical source programs have at
least 1000 tokens, and 10003 = 109
is a lot of steps, even for a fast
modern computer.
The solution?
—Smarter selection in the choice of
productions we try.

226CS 536 Spring 2015 ©

Reading Assignment
Read Chapter 5 of
Crafting a Compiler, Second
Edition.

227CS 536 Spring 2015 ©

Prediction
We want to avoid trying
productions that can’t possibly
work.
For example, if the current token
to be parsed is an identifier, it is
useless to try a production that
begins with an integer literal.
Before we try a production, we’ll
consider the set of terminals it
might initially produce. If the
current token is in this set, we’ll
try the production.
If it isn’t, there is no way the
production being considered
could be part of the parse, so
we’ll ignore it.
A predict function tells us the set
of tokens that might be initially
generated from any production.

228CS 536 Spring 2015 ©

For A → X1...Xn, Predict(A →
X1...Xn) = Set of all initial (first)
tokens derivable from A → X1...Xn

= {a in Vt | A → X1...Xn ⇒* a...}

For example, given
Stmt → Label id = Expr ;

| Label if Expr then Stmt ;
| Label read (IdList) ;
| Label id (Args) ;

Label → intlit :
| λ

Production Predict Set

Stmt → Label id = Expr ; {id, intlit}

Stmt → Label if Expr then Stmt ; {if, intlit}

Stmt → Label read (IdList) ; {read, intlit}

Stmt → Label id (Args) ; {id, intlit}

