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Eliminating Common Prefixes
Assume we have two of more 
productions with the same 
lefthand side and a common 
prefix on their righthand sides:
A → α β | α γ | ... | α δ
We create a new non- terminal, X.
We then rewrite the above 
productions into:
A → αX X → β | γ | ... | δ
For example, 

Stmt →  id = Expr ;
Stmt →  id ( Args ) ;

becomes
Stmt →  id StmtSuffix
StmtSuffix →  = Expr ;
StmtSuffix →  ( Args ) ;
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Eliminating Left Recursion
Assume we have a non- terminal 
that is left recursive:
A → Aα A → β | γ | ... | δ
To eliminate the left recursion, we 
create two new non- terminals, N 
and T.
We then rewrite the above 
productions into:
A → N T N → β | γ | ... | δ
T → α T |  λ
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For example, 
Expr →  Expr + id
Expr →  id

becomes
Expr →  N T
N →  id
T → + id T |  λ

This simplifies to:
Expr →  id  T
T → + id T |  λ
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Reading Assignment
Read Sections 6.1 to 6.5.1 of 
Crafting a Compiler.
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How does JavaCup Work?
The main limitation of LL(1) 
parsing is that it must predict the 
correct production to use when it 
first starts to match the 
production’s righthand side.
An improvement to this approach 
is the LALR(1) parsing method 
that is used in JavaCUP (and Yacc 
and Bison too).
The LALR(1) parser is bottom- up 
in approach. It tracks the portion 
of a righthand side already 
matched as tokens are scanned. It 
may not know immediately which 
is the correct production to 
choose, so it tracks sets of 
possible matching productions.

274CS 536  Spring 2015 ©

Configurations
We’ll use the notation

X →  A B • C D
to represent the fact that we are 
trying to match the production 
X →  A B • C D with A and B 
matched so far.

A production with a “•” 
somewhere in its righthand side is 
called a configuration.
Our goal is to reach a 
configuration with the “dot” at the 
extreme right:

X →  A B C D •

This indicates that an entire 
production has just been 
matched.
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Since we may not know which 
production will eventually be fully 
matched, we may need to track a 
configuration set. A configuration 
set is sometimes called a state.
When we predict a production, we 
place the “dot” at the beginning of 
a production:

X →  • A B C D
This indicates that the production 
may possibly be matched, but no 
symbols have actually yet been 
matched.
We may predict a λ- production:

X →  λ • 

When a λ- production is predicted, 
it is immediately matched, since λ 
can be matched at any time.
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Starting the Parse
At the start of the parse, we know 
some production with the start 
symbol must be used initially. We 
don’t yet know which one, so we 
predict them all:

S →  • A B C D

S →  • e F g

S →  • h I
...
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Closure
When we encounter a 
configuration with the dot to the 
left of a non- terminal, we know 
we need to try to match that non-
terminal.
Thus in

X →  • A B C D
we need to match some 
production with A as its left hand 
side. 
Which production?
We don’t know, so we predict all 
possibilities:

A →  • P Q R

A →  • s T
...
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The newly added configurations 
may predict other non- terminals, 
forcing additional productions to 
be included. We continue this 
process until no additional 
configurations can be added. 
This process is called closure (of 
the configuration set).
Here is the closure algorithm:
ConfigSet Closure(ConfigSet C){

repeat
if (X → a •B d is in C &&

B is a non-terminal)
Add all configurations of

the form B → •g to C)
until (no more configurations

can be added);
return C;

}
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Example of Closure
Assume we have the following 
grammar:
S →  A b
A →  C D
C →  D
C →  c
D →  d

To compute Closure(S →  • A b)
we first include all productions 
that rewrite A:

A →  • C D
Now C productions are included:

C →  • D

C →  • c
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Finally, the D production is added:

D →  • d
The complete configuration set is:

S →  • A b

A →  • C D

C →  • D

C →  • c

D →  • d
This set tells us that if we want to 
match an A, we will need to match 
a C, and this is done by matching 
a c or d token.



281CS 536  Spring 2015 ©

Shift Operations
When we match a symbol (a 
terminal or non- terminal), we 
shift the “dot” past the symbol 
just matched. Configurations that 
don’t have a dot to the left of the 
matched symbol are deleted 
(since they didn’t correctly 
anticipate the matched symbol).
The GoTo function computes an 
updated configuration set after a 
symbol is shifted:

ConfigSet GoTo(ConfigSet C,Symbol X){
B= φ;
for each configuration f in C{

if (f is of the form A →  α•X δ)
 Add A →  α X •δ to B;

}
 return Closure(B);
}
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For example, if C is

 S →  • A b
A →  • C D
C →  • D
C →  • c
D →  • d

and X is C, then GoTo returns

A →  C • D
D →  • d
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Reduce Actions
When the dot in a configuration 
reaches the rightmost position, 
we have matched an entire 
righthand side. We are ready to 
replace the righthand side 
symbols with the lefthand side of 
the production. The lefthand side 
symbol can now be considered 
matched.
If a configuration set can shift a 
token and also reduce a 
production, we have a potential 
shift/reduce error.
If we can reduce more than one 
production, we have a potential 
reduce/reduce error.
How do we decide whether to do a 
shift or reduce? How do we 
choose among more than one 
reduction?
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We examine the next token to see 
if it is consistent with the 
potential reduce actions.
The simplest way to do this is to 
use Follow sets, as we did in LL(1) 
parsing.
If we have a configuration

A →  α •
we will reduce this production 
only if the current token, CT, is in 
Follow(A).
This makes sense since if we 
reduce α to A, we can’t correctly 
match CT if CT can’t follow A.
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Shift/Reduce and Reduce/
Reduce Errors

If we have a parse state that 
contains the configurations

A →  α •

B →  β • a γ
and a in Follow(A) then there is an 
unresolvable shift/reduce conflict. 
This grammar can’t be parsed.
Similarly, if we have a parse state 
that contains the configurations

A →  α •

B →  β •

and Follow(A) ∩ Follow(B) ≠ φ, 
then the parser has an 
unresolvable reduce/reduce 
conflict. This grammar can’t be 
parsed.
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Building Parse States
All the manipulations needed to 
build and complete configuration 
sets suggest that parsing may be 
slow—configuration sets need to 
be updated after each token is 
matched.
Fortunately, all the configuration 
sets we ever will need can be 
computed and tabled in advance, 
when a tool like Java Cup builds a 
parser.
The idea is simple. We first 
compute an initial parse state, s0, 
that corresponds to predicting 
productions that expand the start 
symbol. We then just compute 
successor states for each token 
that might be scanned. A 
complete set of states can be 
computed. For typical 
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programming language 
grammars, only a few hundred 
states are needed.
Here is the algorithm that builds a 
complete set of parse states for a 
grammar:

StateSet BuildStates(){
 Let s0=Closure({S →  •α, S →  •β, ...});

 C={s0};
while (not all states in C are marked){
Choose any unmarked state, s, in C
Mark s;
For each X in

terminals U nonterminals {
if (GoTo(s,X) is not in C)

Add GoTo(s,X) to C;
}
}
return C;
}
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Configuration Sets for CSX-
Lite

State Cofiguration Set

s0 Prog → •{ Stmts } Eof

s1

Prog → { • Stmts } Eof
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) Stmt

s2 Prog → { Stmts •} Eof

s3

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) Stmt

s4 Stmt →  id • = Expr ;

s5 Stmt →  if • ( Expr ) Stmt
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s6 Prog → { Stmts } •Eof

s7 Stmts → Stmt Stmts •

s8

Stmt →  id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s9

Stmt →  if  ( • Expr ) Stmt
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s10 Prog → { Stmts } Eof •

s11
Stmt →  id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

s12 Expr → id •

s13
Stmt →  if  ( Expr •) Stmt
Expr → Expr • + id
Expr → Expr • - id

State Cofiguration Set

290CS 536  Spring 2015 ©

s14 Stmt →  id = Expr ; •

s15 Expr → Expr + • id

s16 Expr → Expr - • id

s17
Stmt →  if  ( Expr ) • Stmt
Stmt → • id = Expr ;
Stmt → • if ( Expr ) Stmt

s18 Expr → Expr + id •

s19 Expr → Expr - id •

s20 Stmt →  if  ( Expr ) Stmt •

State Cofiguration Set
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Parser Action Table
We will table possible parser 
actions based on the current state 
(configuration set) and token.
Given configuration set C and 
input token T four actions are 
possible:
• Reduce i: The i- th production has 

been matched.

• Shift: Match the current token.

• Accept: Parse is correct and 
complete.

• Error: A syntax error has been 
discovered.
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We will let A[C][T] represent the 
possible parser actions given 
configuration set C and input 
token T.
A[C][T] =  

{Reduce i |  i- th production is A→ α
and A →  α • is in C 
and T in Follow(A) } 

U (If (B →  β • T γ is in C)
{Shift} else φ)

This rule simply collects all the 
actions that a parser might do 
given C and T.
But we want parser actions to be 
unique so we require that the 
parser action always be unique for 
any C and T. 
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If the parser action isn’t unique, 
then we have a shift/reduce error 
or reduce/reduce error. The 
grammar is then rejected as 
unparsable.
If parser actions are always 
unique then we will consider a 
shift of EOF to be an accept 
action.
An empty (or undefined) action 
for C and T will signify that token 
T is illegal given configuration set 
C. 
A syntax error will be signaled.
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LALR Parser Driver
Given the GoTo and parser action 
tables, a Shift/Reduce (LALR) 
parser is fairly simple:

void LALRDriver(){
 Push(S0);
while(true){
//Let S = Top state on parse stack
//Let CT = current token to match

switch (A[S][CT]) {
case error:

SyntaxError(CT);return;
case accept:

return;
case shift:

push(GoTo[S][CT]);
CT= Scanner();
break;

case reduce i:
//Let prod i = A→Y1...Ym

 pop m states;
//Let S’ = new top state
push(GoTo[S’][A]);
break;

} } }
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Action Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ S

} R3 S R3 R2 R4 R5

if S S R4 S R5

( S

) R8 S R6 R7

id S S S S R4 S S S

= S

+ S R8 S R6 R7

- S R8 S R6 R7

; S R8 R6 R7 R5

eof A
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GoTo Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ 1

} 6

if 5 5 5

( 9

) 17

id 4 4 12 12 18 19 4

= 8

+ 15 15

- 16 16

; 14

eof 10

stmts 2 7

stmt 3 3

expr 11 13
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Example of LALR(1) Parsing
We’ll again parse
{ a = b + c; } Eof 

We start by pushing state 0 on the 
parse stack.

Parse 
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { a = b + c; } Eof 

1
0

Prog → { • Stmts } Eof
Stmts → • Stmt  Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) 

Shift  a = b + c; } Eof

4
1
0

Stmt →  id • = Expr ;  = b + c; } Eof

8
4
1
0

Stmt →  id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

Shift  b + c; } Eof
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12
8
4
1
0

Expr → id • Reduce 8 + c; } Eof

11
8
4
1
0

Stmt →  id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift  + c; } Eof

15
11
8
4
1
0

Expr → Expr + • id Shift  c; } Eof

Parse 
Stack Top State Action Remaining Input
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18
15
11
8
4
1
0

Expr → Expr + id • Reduce 6  ; } Eof

11
8
4
1
0

Stmt →  id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift  ; } Eof

14
11
8
4
1
0

Stmt →  id = Expr ; • Reduce 4  } Eof

Parse 
Stack Top State Action Remaining Input
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3
1
0

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) 
Stmt

Reduce 3  } Eof

7
3
1
0

Stmts → Stmt Stmts • Reduce 2  } Eof

2
1
0

Prog → { Stmts •} Eof Shift  } Eof

6
2
1
0

Prog → { Stmts } •Eof Accept  Eof

Parse 
Stack Top State Action Remaining Input
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Error Detection in LALR 
Parsers

In bottom- up, LALR parsers 
syntax errors are discovered when 
a blank (error) entry is fetched 
from the parser action table.
Let’s again trace how the 
following illegal CSX- lite program 
is parsed:

{ b + c = a; } Eof

Parse 
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { b + c = a; } Eof 
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1
0

Prog → { • Stmts } Eof
Stmts → • Stmt  Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) 

Shift  b + c = a; } Eof 

4
1
0

Stmt →  id • = Expr ; Error
(blank)

 + c = a; } Eof 

Parse 
Stack Top State Action Remaining Input
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LALR is More Powerful
Essentially all LL(1) grammars are 
LALR(1) plus many more. 
Grammar constructs that confuse 
LL(1) are readily handled.
• Common prefixes are no problem. 

Since sets of configurations are 
tracked, more than one prefix can 
be followed. For example, in

Stmt →  id = Expr ;
Stmt →  id ( Args ) ;

after we match an id we have

Stmt →  id • = Expr ;
Stmt →  id • ( Args ) ;

The next token will tell us which 
production to use.
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• Left recursion is also not a 
problem. Since sets of 
configurations are tracked, we can 
follow a left- recursive production 
and all others it might use. For 
example, in

Expr → • Expr + id
Expr →  • id 

we can first match an id:

Expr →  id •

Then the Expr is recognized:

Expr →  Expr • + id

The left- recursion is handled!
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• But ambiguity will still block 
construction of an LALR parser. 
Some shift/reduce or reduce/
reduce conflict must appear. (Since 
two or more distinct parses are 
possible for some input).
Consider our original productions 
for if- then and if- then- else 
statements:

Stmt → if ( Expr ) Stmt •

Stmt →  if ( Expr ) Stmt  • else Stmt

Since else can follow Stmt, we 
have an unresolvable shift/reduce 
conflict. 
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Grammar Engineering
Though LALR grammars are very 
general and inclusive, sometimes 
a reasonable set of productions is 
rejected due to shift/reduce or 
reduce/reduce conflicts.
In such cases, the grammar may 
need to be “engineered” to allow 
the parser to operate.
A good example of this is the 
definition of MemberDecls in CSX. 
A straightforward definition is

MemberDecls → FieldDecls MethodDecls
 FieldDecls →  FieldDecl FieldDecls
 FieldDecls →  λ
MethodDecls →  MethodDecl MethodDecls
 MethodDecls →  λ
FieldDecl →  int id ;
MethodDecl →  int id ( ) ; Body
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When we predict MemberDecls we 
get:

MemberDecls → • FieldDecls MethodDecls
 FieldDecls → • FieldDecl FieldDecls
 FieldDecls →  λ•
FieldDecl → • int id ;

Now int follows FieldDecls since 
MethodDecls ⇒+ int ...
Thus an unresolvable shift/reduce 
conflict exists.
The problem is that int is 
derivable from both FieldDecls 
and MethodDecls, so when we see 
an int, we can’t tell which way to 
parse it (and FieldDecls →  λ 
requires we make an immediate 
decision!).
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If we rewrite the grammar so that 
we can delay deciding from where 
the int was generated, a valid 
LALR parser can be built:

MemberDecls → FieldDecl MemberDecls
MemberDecls →  MethodDecls
MethodDecls →  MethodDecl MethodDecls
 MethodDecls →  λ
FieldDecl →  int id ;
MethodDecl →  int id ( ) ; Body

When MemberDecls is predicted 
we have
MemberDecls → • FieldDecl MemberDecls
MemberDecls → • MethodDecls
MethodDecls →  •MethodDecl MethodDecls
MethodDecls →  λ •
FieldDecl → • int id ;
MethodDecl → • int id ( ) ; Body
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Now Follow(MethodDecls) =  
Follow(MemberDecls) =  “}”, so we 
have no shift/reduce conflict. 
After int id is matched, the next 
token (a “;” or a “(“) will tell us 
whether a FieldDecl or a 
MethodDecl is being matched.

310CS 536  Spring 2015 ©

Properties of LL and LALR 
Parsers
• Each prediction or reduce action is 

guaranteed correct. Hence the entire 
parse (built from LL predictions or 
LALR reductions) must be correct.

This follows from the fact that LL 
parsers allow only one valid prediction 
per step. Similarly, an LALR parser 
never skips a reduction if it is 
consistent with the current token (and 
all possible reductions are tracked).
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• LL and LALR parsers detect an syntax 
error as soon as the first invalid token 
is seen.

Neither parser can match an invalid 
program prefix. If a token is matched 
it must be part of a valid program 
prefix. In fact, the prediction made or 
the stacked configuration sets show a 
possible derivation of the token 
accepted so far.

• All LL and LALR grammars are 
unambiguous.

LL predictions are always unique and 
LALR shift/reduce or reduce/reduce 
conflicts are disallowed. Hence only 
one valid derivation of any token 
sequence is possible.
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• All LL and LALR parsers require only 
linear time and space (in terms of the 
number of tokens parsed).

The parsers do only fixed work per 
node of the concrete parse tree, and 
the size of this tree is linear in terms 
of the number of leaves in it (even with 
λ- productions included!).
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Reading Assignment
Read Chapter 8 of Crafting a 
Compiler. 
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Symbol Tables in CSX
CSX is designed to make symbol 
tables easy to create and use.
There are three places where a 
new scope is opened:
• In the class that represents the 

program text. The scope is opened 
as soon as we begin processing the 
classNode (that roots the entire 
program). The scope stays open 
until the entire class (the whole 
program) is processed.

• When a methodDeclNode is 
processed. The name of the 
method is entered in the top- level 
(global) symbol table. Declarations 
of parameters and locals are placed 
in the method’s symbol table. A 
method’s symbol table is closed 
after all the statements in its body 
are type checked.
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• When a blockNode is processed. 
Locals are placed in the block’s 
symbol table. A block’s symbol 
table is closed after all the 
statements in its body are type 
checked.
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CSX Allows no Forward 
References

This means we can do type-
checking in one pass over the 
AST. As declarations are 
processed, their identifiers are 
added to the current (innermost) 
symbol table. When a use of an 
identifier occurs, we do an 
ordinary block- structured lookup, 
always using the innermost 
declaration found. Hence in

int i = j;
int j = i;

the first declaration initializes i to 
the nearest non- local definition of 
j.
The second declaration initializes 
j to the current (local) definition 
of i.
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Forward References Require 
Two Passes

If forward references are allowed, 
we can process declarations in 
two passes.
First we walk the AST to establish 
symbol tables entries for all local 
declarations. No uses (lookups) 
are handled in this passes.
On a second complete pass, all 
uses are processed, using the 
symbol table entries built on the 
first pass.
Forward references make type 
checking a bit trickier, as we may 
reference a declaration not yet 
fully processed.
In Java, forward references to 
fields within a class are allowed.
Thus in 
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class Duh {
int i = j;
int j = i;
}

a Java compiler must recognize 
that the initialization of i is to the 
j field and that the j declaration 
is incomplete (Java forbids 
uninitialized fields or variables).
Forward references do allow 
methods to be mutually recursive. 
That is, we can let method a call 
b, while b calls a.
In CSX this is impossible!
(Why?)
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Incomplete Declarations
Some languages, like C+ + , allow 
incomplete declarations. 
First, part of a declaration (usually 
the header of a procedure or 
method) is presented.
Later, the declaration is 
completed.
For example (in C+ + ):
class C {
  int i;
 public:
  int f();
};
int C::f(){return i+1;}
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Incomplete declarations solve 
potential forward reference 
problems, as you can declare 
method headers first, and bodies 
that use the headers later.
Headers support abstraction and 
separate compilation too.
In C and C+ + , it is common to 
use a #include statement to add 
the headers (but not bodies) of 
external or library routines you 
wish to use.
C+ +  also allows you to declare a 
class by giving its fields and 
method headers first, with the 
bodies of the methods declared 
later. This is good for users of the 
class, who don’t always want to 
see implementation details.


