
269CS 536 Spring 2015 ©

Eliminating Common Prefixes
Assume we have two of more
productions with the same
lefthand side and a common
prefix on their righthand sides:
A → α β | α γ | ... | α δ
We create a new non- terminal, X.
We then rewrite the above
productions into:
A → αX X → β | γ | ... | δ
For example,

Stmt → id = Expr ;
Stmt → id (Args) ;

becomes
Stmt → id StmtSuffix
StmtSuffix → = Expr ;
StmtSuffix → (Args) ;

270CS 536 Spring 2015 ©

Eliminating Left Recursion
Assume we have a non- terminal
that is left recursive:
A → Aα A → β | γ | ... | δ
To eliminate the left recursion, we
create two new non- terminals, N
and T.
We then rewrite the above
productions into:
A → N T N → β | γ | ... | δ
T → α T | λ

271CS 536 Spring 2015 ©

For example,
Expr → Expr + id
Expr → id

becomes
Expr → N T
N → id
T → + id T | λ

This simplifies to:
Expr → id T
T → + id T | λ

272CS 536 Spring 2015 ©

Reading Assignment
Read Sections 6.1 to 6.5.1 of
Crafting a Compiler.

273CS 536 Spring 2015 ©

How does JavaCup Work?
The main limitation of LL(1)
parsing is that it must predict the
correct production to use when it
first starts to match the
production’s righthand side.
An improvement to this approach
is the LALR(1) parsing method
that is used in JavaCUP (and Yacc
and Bison too).
The LALR(1) parser is bottom- up
in approach. It tracks the portion
of a righthand side already
matched as tokens are scanned. It
may not know immediately which
is the correct production to
choose, so it tracks sets of
possible matching productions.

274CS 536 Spring 2015 ©

Configurations
We’ll use the notation

X → A B • C D
to represent the fact that we are
trying to match the production
X → A B • C D with A and B
matched so far.

A production with a “•”
somewhere in its righthand side is
called a configuration.
Our goal is to reach a
configuration with the “dot” at the
extreme right:

X → A B C D •

This indicates that an entire
production has just been
matched.

275CS 536 Spring 2015 ©

Since we may not know which
production will eventually be fully
matched, we may need to track a
configuration set. A configuration
set is sometimes called a state.
When we predict a production, we
place the “dot” at the beginning of
a production:

X → • A B C D
This indicates that the production
may possibly be matched, but no
symbols have actually yet been
matched.
We may predict a λ- production:

X → λ •

When a λ- production is predicted,
it is immediately matched, since λ
can be matched at any time.

276CS 536 Spring 2015 ©

Starting the Parse
At the start of the parse, we know
some production with the start
symbol must be used initially. We
don’t yet know which one, so we
predict them all:

S → • A B C D

S → • e F g

S → • h I
...

277CS 536 Spring 2015 ©

Closure
When we encounter a
configuration with the dot to the
left of a non- terminal, we know
we need to try to match that non-
terminal.
Thus in

X → • A B C D
we need to match some
production with A as its left hand
side.
Which production?
We don’t know, so we predict all
possibilities:

A → • P Q R

A → • s T
...

278CS 536 Spring 2015 ©

The newly added configurations
may predict other non- terminals,
forcing additional productions to
be included. We continue this
process until no additional
configurations can be added.
This process is called closure (of
the configuration set).
Here is the closure algorithm:
ConfigSet Closure(ConfigSet C){

repeat
if (X → a •B d is in C &&

B is a non-terminal)
Add all configurations of

the form B → •g to C)
until (no more configurations

can be added);
return C;

}

279CS 536 Spring 2015 ©

Example of Closure
Assume we have the following
grammar:
S → A b
A → C D
C → D
C → c
D → d

To compute Closure(S → • A b)
we first include all productions
that rewrite A:

A → • C D
Now C productions are included:

C → • D

C → • c

280CS 536 Spring 2015 ©

Finally, the D production is added:

D → • d
The complete configuration set is:

S → • A b

A → • C D

C → • D

C → • c

D → • d
This set tells us that if we want to
match an A, we will need to match
a C, and this is done by matching
a c or d token.

281CS 536 Spring 2015 ©

Shift Operations
When we match a symbol (a
terminal or non- terminal), we
shift the “dot” past the symbol
just matched. Configurations that
don’t have a dot to the left of the
matched symbol are deleted
(since they didn’t correctly
anticipate the matched symbol).
The GoTo function computes an
updated configuration set after a
symbol is shifted:

ConfigSet GoTo(ConfigSet C,Symbol X){
B= φ;
for each configuration f in C{

if (f is of the form A → α•X δ)
 Add A → α X •δ to B;

}
 return Closure(B);
}

282CS 536 Spring 2015 ©

For example, if C is

 S → • A b
A → • C D
C → • D
C → • c
D → • d

and X is C, then GoTo returns

A → C • D
D → • d

283CS 536 Spring 2015 ©

Reduce Actions
When the dot in a configuration
reaches the rightmost position,
we have matched an entire
righthand side. We are ready to
replace the righthand side
symbols with the lefthand side of
the production. The lefthand side
symbol can now be considered
matched.
If a configuration set can shift a
token and also reduce a
production, we have a potential
shift/reduce error.
If we can reduce more than one
production, we have a potential
reduce/reduce error.
How do we decide whether to do a
shift or reduce? How do we
choose among more than one
reduction?

284CS 536 Spring 2015 ©

We examine the next token to see
if it is consistent with the
potential reduce actions.
The simplest way to do this is to
use Follow sets, as we did in LL(1)
parsing.
If we have a configuration

A → α •
we will reduce this production
only if the current token, CT, is in
Follow(A).
This makes sense since if we
reduce α to A, we can’t correctly
match CT if CT can’t follow A.

285CS 536 Spring 2015 ©

Shift/Reduce and Reduce/
Reduce Errors

If we have a parse state that
contains the configurations

A → α •

B → β • a γ
and a in Follow(A) then there is an
unresolvable shift/reduce conflict.
This grammar can’t be parsed.
Similarly, if we have a parse state
that contains the configurations

A → α •

B → β •

and Follow(A) ∩ Follow(B) ≠ φ,
then the parser has an
unresolvable reduce/reduce
conflict. This grammar can’t be
parsed.

286CS 536 Spring 2015 ©

Building Parse States
All the manipulations needed to
build and complete configuration
sets suggest that parsing may be
slow—configuration sets need to
be updated after each token is
matched.
Fortunately, all the configuration
sets we ever will need can be
computed and tabled in advance,
when a tool like Java Cup builds a
parser.
The idea is simple. We first
compute an initial parse state, s0,
that corresponds to predicting
productions that expand the start
symbol. We then just compute
successor states for each token
that might be scanned. A
complete set of states can be
computed. For typical

287CS 536 Spring 2015 ©

programming language
grammars, only a few hundred
states are needed.
Here is the algorithm that builds a
complete set of parse states for a
grammar:

StateSet BuildStates(){
 Let s0=Closure({S → •α, S → •β, ...});

 C={s0};
while (not all states in C are marked){
Choose any unmarked state, s, in C
Mark s;
For each X in

terminals U nonterminals {
if (GoTo(s,X) is not in C)

Add GoTo(s,X) to C;
}
}
return C;
}

288CS 536 Spring 2015 ©

Configuration Sets for CSX-
Lite

State Cofiguration Set

s0 Prog → •{ Stmts } Eof

s1

Prog → { • Stmts } Eof
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s2 Prog → { Stmts •} Eof

s3

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s4 Stmt → id • = Expr ;

s5 Stmt → if • (Expr) Stmt

289CS 536 Spring 2015 ©

s6 Prog → { Stmts } •Eof

s7 Stmts → Stmt Stmts •

s8

Stmt → id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s9

Stmt → if (• Expr) Stmt
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s10 Prog → { Stmts } Eof •

s11
Stmt → id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

s12 Expr → id •

s13
Stmt → if (Expr •) Stmt
Expr → Expr • + id
Expr → Expr • - id

State Cofiguration Set

290CS 536 Spring 2015 ©

s14 Stmt → id = Expr ; •

s15 Expr → Expr + • id

s16 Expr → Expr - • id

s17
Stmt → if (Expr) • Stmt
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s18 Expr → Expr + id •

s19 Expr → Expr - id •

s20 Stmt → if (Expr) Stmt •

State Cofiguration Set

291CS 536 Spring 2015 ©

Parser Action Table
We will table possible parser
actions based on the current state
(configuration set) and token.
Given configuration set C and
input token T four actions are
possible:
• Reduce i: The i- th production has

been matched.

• Shift: Match the current token.

• Accept: Parse is correct and
complete.

• Error: A syntax error has been
discovered.

292CS 536 Spring 2015 ©

We will let A[C][T] represent the
possible parser actions given
configuration set C and input
token T.
A[C][T] =

{Reduce i | i- th production is A→ α
and A → α • is in C
and T in Follow(A) }

U (If (B → β • T γ is in C)
{Shift} else φ)

This rule simply collects all the
actions that a parser might do
given C and T.
But we want parser actions to be
unique so we require that the
parser action always be unique for
any C and T.

293CS 536 Spring 2015 ©

If the parser action isn’t unique,
then we have a shift/reduce error
or reduce/reduce error. The
grammar is then rejected as
unparsable.
If parser actions are always
unique then we will consider a
shift of EOF to be an accept
action.
An empty (or undefined) action
for C and T will signify that token
T is illegal given configuration set
C.
A syntax error will be signaled.

294CS 536 Spring 2015 ©

LALR Parser Driver
Given the GoTo and parser action
tables, a Shift/Reduce (LALR)
parser is fairly simple:

void LALRDriver(){
 Push(S0);
while(true){
//Let S = Top state on parse stack
//Let CT = current token to match

switch (A[S][CT]) {
case error:

SyntaxError(CT);return;
case accept:

return;
case shift:

push(GoTo[S][CT]);
CT= Scanner();
break;

case reduce i:
//Let prod i = A→Y1...Ym

 pop m states;
//Let S’ = new top state
push(GoTo[S’][A]);
break;

} } }

295CS 536 Spring 2015 ©

Action Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ S

} R3 S R3 R2 R4 R5

if S S R4 S R5

(S

) R8 S R6 R7

id S S S S R4 S S S

= S

+ S R8 S R6 R7

- S R8 S R6 R7

; S R8 R6 R7 R5

eof A

296CS 536 Spring 2015 ©

GoTo Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ 1

} 6

if 5 5 5

(9

) 17

id 4 4 12 12 18 19 4

= 8

+ 15 15

- 16 16

; 14

eof 10

stmts 2 7

stmt 3 3

expr 11 13

297CS 536 Spring 2015 ©

Example of LALR(1) Parsing
We’ll again parse
{ a = b + c; } Eof

We start by pushing state 0 on the
parse stack.

Parse
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { a = b + c; } Eof

1
0

Prog → { • Stmts } Eof
Stmts → • Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)

Shift a = b + c; } Eof

4
1
0

Stmt → id • = Expr ; = b + c; } Eof

8
4
1
0

Stmt → id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

Shift b + c; } Eof

298CS 536 Spring 2015 ©

12
8
4
1
0

Expr → id • Reduce 8 + c; } Eof

11
8
4
1
0

Stmt → id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift + c; } Eof

15
11
8
4
1
0

Expr → Expr + • id Shift c; } Eof

Parse
Stack Top State Action Remaining Input

299CS 536 Spring 2015 ©

18
15
11
8
4
1
0

Expr → Expr + id • Reduce 6 ; } Eof

11
8
4
1
0

Stmt → id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift ; } Eof

14
11
8
4
1
0

Stmt → id = Expr ; • Reduce 4 } Eof

Parse
Stack Top State Action Remaining Input

300CS 536 Spring 2015 ©

3
1
0

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)
Stmt

Reduce 3 } Eof

7
3
1
0

Stmts → Stmt Stmts • Reduce 2 } Eof

2
1
0

Prog → { Stmts •} Eof Shift } Eof

6
2
1
0

Prog → { Stmts } •Eof Accept Eof

Parse
Stack Top State Action Remaining Input

301CS 536 Spring 2015 ©

Error Detection in LALR
Parsers

In bottom- up, LALR parsers
syntax errors are discovered when
a blank (error) entry is fetched
from the parser action table.
Let’s again trace how the
following illegal CSX- lite program
is parsed:

{ b + c = a; } Eof

Parse
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { b + c = a; } Eof

302CS 536 Spring 2015 ©

1
0

Prog → { • Stmts } Eof
Stmts → • Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)

Shift b + c = a; } Eof

4
1
0

Stmt → id • = Expr ; Error
(blank)

 + c = a; } Eof

Parse
Stack Top State Action Remaining Input

303CS 536 Spring 2015 ©

LALR is More Powerful
Essentially all LL(1) grammars are
LALR(1) plus many more.
Grammar constructs that confuse
LL(1) are readily handled.
• Common prefixes are no problem.

Since sets of configurations are
tracked, more than one prefix can
be followed. For example, in

Stmt → id = Expr ;
Stmt → id (Args) ;

after we match an id we have

Stmt → id • = Expr ;
Stmt → id • (Args) ;

The next token will tell us which
production to use.

304CS 536 Spring 2015 ©

• Left recursion is also not a
problem. Since sets of
configurations are tracked, we can
follow a left- recursive production
and all others it might use. For
example, in

Expr → • Expr + id
Expr → • id

we can first match an id:

Expr → id •

Then the Expr is recognized:

Expr → Expr • + id

The left- recursion is handled!

305CS 536 Spring 2015 ©

• But ambiguity will still block
construction of an LALR parser.
Some shift/reduce or reduce/
reduce conflict must appear. (Since
two or more distinct parses are
possible for some input).
Consider our original productions
for if- then and if- then- else
statements:

Stmt → if (Expr) Stmt •

Stmt → if (Expr) Stmt • else Stmt

Since else can follow Stmt, we
have an unresolvable shift/reduce
conflict.

306CS 536 Spring 2015 ©

Grammar Engineering
Though LALR grammars are very
general and inclusive, sometimes
a reasonable set of productions is
rejected due to shift/reduce or
reduce/reduce conflicts.
In such cases, the grammar may
need to be “engineered” to allow
the parser to operate.
A good example of this is the
definition of MemberDecls in CSX.
A straightforward definition is

MemberDecls → FieldDecls MethodDecls
 FieldDecls → FieldDecl FieldDecls
 FieldDecls → λ
MethodDecls → MethodDecl MethodDecls
 MethodDecls → λ
FieldDecl → int id ;
MethodDecl → int id () ; Body

307CS 536 Spring 2015 ©

When we predict MemberDecls we
get:

MemberDecls → • FieldDecls MethodDecls
 FieldDecls → • FieldDecl FieldDecls
 FieldDecls → λ•
FieldDecl → • int id ;

Now int follows FieldDecls since
MethodDecls ⇒+ int ...
Thus an unresolvable shift/reduce
conflict exists.
The problem is that int is
derivable from both FieldDecls
and MethodDecls, so when we see
an int, we can’t tell which way to
parse it (and FieldDecls → λ
requires we make an immediate
decision!).

308CS 536 Spring 2015 ©

If we rewrite the grammar so that
we can delay deciding from where
the int was generated, a valid
LALR parser can be built:

MemberDecls → FieldDecl MemberDecls
MemberDecls → MethodDecls
MethodDecls → MethodDecl MethodDecls
 MethodDecls → λ
FieldDecl → int id ;
MethodDecl → int id () ; Body

When MemberDecls is predicted
we have
MemberDecls → • FieldDecl MemberDecls
MemberDecls → • MethodDecls
MethodDecls → •MethodDecl MethodDecls
MethodDecls → λ •
FieldDecl → • int id ;
MethodDecl → • int id () ; Body

309CS 536 Spring 2015 ©

Now Follow(MethodDecls) =
Follow(MemberDecls) = “}”, so we
have no shift/reduce conflict.
After int id is matched, the next
token (a “;” or a “(“) will tell us
whether a FieldDecl or a
MethodDecl is being matched.

310CS 536 Spring 2015 ©

Properties of LL and LALR
Parsers
• Each prediction or reduce action is

guaranteed correct. Hence the entire
parse (built from LL predictions or
LALR reductions) must be correct.

This follows from the fact that LL
parsers allow only one valid prediction
per step. Similarly, an LALR parser
never skips a reduction if it is
consistent with the current token (and
all possible reductions are tracked).

311CS 536 Spring 2015 ©

• LL and LALR parsers detect an syntax
error as soon as the first invalid token
is seen.

Neither parser can match an invalid
program prefix. If a token is matched
it must be part of a valid program
prefix. In fact, the prediction made or
the stacked configuration sets show a
possible derivation of the token
accepted so far.

• All LL and LALR grammars are
unambiguous.

LL predictions are always unique and
LALR shift/reduce or reduce/reduce
conflicts are disallowed. Hence only
one valid derivation of any token
sequence is possible.

312CS 536 Spring 2015 ©

• All LL and LALR parsers require only
linear time and space (in terms of the
number of tokens parsed).

The parsers do only fixed work per
node of the concrete parse tree, and
the size of this tree is linear in terms
of the number of leaves in it (even with
λ- productions included!).

313CS 536 Spring 2015 ©

Reading Assignment
Read Chapter 8 of Crafting a
Compiler.

314CS 536 Spring 2015 ©

Symbol Tables in CSX
CSX is designed to make symbol
tables easy to create and use.
There are three places where a
new scope is opened:
• In the class that represents the

program text. The scope is opened
as soon as we begin processing the
classNode (that roots the entire
program). The scope stays open
until the entire class (the whole
program) is processed.

• When a methodDeclNode is
processed. The name of the
method is entered in the top- level
(global) symbol table. Declarations
of parameters and locals are placed
in the method’s symbol table. A
method’s symbol table is closed
after all the statements in its body
are type checked.

315CS 536 Spring 2015 ©

• When a blockNode is processed.
Locals are placed in the block’s
symbol table. A block’s symbol
table is closed after all the
statements in its body are type
checked.

316CS 536 Spring 2015 ©

CSX Allows no Forward
References

This means we can do type-
checking in one pass over the
AST. As declarations are
processed, their identifiers are
added to the current (innermost)
symbol table. When a use of an
identifier occurs, we do an
ordinary block- structured lookup,
always using the innermost
declaration found. Hence in

int i = j;
int j = i;

the first declaration initializes i to
the nearest non- local definition of
j.
The second declaration initializes
j to the current (local) definition
of i.

317CS 536 Spring 2015 ©

Forward References Require
Two Passes

If forward references are allowed,
we can process declarations in
two passes.
First we walk the AST to establish
symbol tables entries for all local
declarations. No uses (lookups)
are handled in this passes.
On a second complete pass, all
uses are processed, using the
symbol table entries built on the
first pass.
Forward references make type
checking a bit trickier, as we may
reference a declaration not yet
fully processed.
In Java, forward references to
fields within a class are allowed.
Thus in

318CS 536 Spring 2015 ©

class Duh {
int i = j;
int j = i;
}

a Java compiler must recognize
that the initialization of i is to the
j field and that the j declaration
is incomplete (Java forbids
uninitialized fields or variables).
Forward references do allow
methods to be mutually recursive.
That is, we can let method a call
b, while b calls a.
In CSX this is impossible!
(Why?)

319CS 536 Spring 2015 ©

Incomplete Declarations
Some languages, like C+ + , allow
incomplete declarations.
First, part of a declaration (usually
the header of a procedure or
method) is presented.
Later, the declaration is
completed.
For example (in C+ +):
class C {
 int i;
 public:
 int f();
};
int C::f(){return i+1;}

320CS 536 Spring 2015 ©

Incomplete declarations solve
potential forward reference
problems, as you can declare
method headers first, and bodies
that use the headers later.
Headers support abstraction and
separate compilation too.
In C and C+ + , it is common to
use a #include statement to add
the headers (but not bodies) of
external or library routines you
wish to use.
C+ + also allows you to declare a
class by giving its fields and
method headers first, with the
bodies of the methods declared
later. This is good for users of the
class, who don’t always want to
see implementation details.

