
1CS 536 Fall 2002
©

CS 536

Introduction to
 Programming Languages

and Compilers

Charles N. Fischer

Fall 2002

 http://www.cs.wisc.edu/~fischer/cs536.html

2CS 536 Fall 2002
©

Recitations
Both sections:
Tuesdays, 2:25 — 3:15
113 Psychology

3CS 536 Fall 2002
©

Java & Object-Oriented
Programming

Java is a fairly new and very popular
programming language designed to
support secure, platform-independent
programming.
It is a good alternative to C or C++,
trading a bit of efficiency for easier
programming, debugging and
maintenance.
Java is routinely interpreted (at the
byte-code level), making it
significantly slower than compiled C
or C++. However true Java compilers
exist, and are becoming more wide-
spread. (IBM’s Jalapeno project is a
good example). When compiled,
Java’s execution speed is close to that
of C or C++.

4CS 536 Fall 2002
©

Basic Notions
In Java data is either primitive or an
object (an instance of some class).
All code is written inside classes, so
Java programming consists of writing
classes.
Primitive data types are quite close to
those of C or C++:
boolean (not a numeric type)
char (Unicode, 16 bits)
byte

short

int

long (64 bits)
float

double

5CS 536 Fall 2002
©

Objects
• All Java objects are instances of classes.

• All objects are heap-allocated, with
automatic garbage collection.

• A reference to an object, in a variable,
parameter or another object, is actually a
pointer to some object allocated within
the heap.

• No explicit pointer manipulation
operations (like * or -> or ++) are
needed or allowed.

• Example:
class Point {int x,y;}

 Point data = new Point();

6CS 536 Fall 2002
©

• Declaring an object reference (like class
Point) does not automatically allocate
space for an object. The reference is
initialized to null unless an explicit
initializer is included.

• Fields are accessed just as they are in C:
data.x references field x in object
data .

• Object references are automatically
checked for validity (null or non-null).
Hence
data.x = 0;
forces a run-time exception if data
contains null rather than a valid object
reference.

7CS 536 Fall 2002
©

• Java makes it impossible for an object
reference to access an illegal address. A
reference is either null or a pointer to a
valid, type-correct object in the heap.
(This makes Java programs far more
secure and reliable than C or C++
programs).

8CS 536 Fall 2002
©

Class Members
Classes contain members. Class
members are either fields (data) or
methods (functions).
Example:
 class Point {

 int x,y;

 void clear() {x=0; y=0;}
 }

 Point d = new Point():

 d.clear();

A special method is a constructor.
A constructor has no result type. It is
used only to define the initialization
of an object after the object has been
created.

9CS 536 Fall 2002
©

Constructors may be overloaded.

class Point {

 int x,y;

 Point() {x=0; y=0;}

 Point(int xin, int yin) {

 x = xin; y = yin;
 }
}

10CS 536 Fall 2002
©

Static Members
Class members may be static.
A static member is allocated only
once—for all instances of the class.
Ordinary members (called instance
members) apply only to a particular
class instance (i.e., only one object
created from the class definition).
class Point {

 int x,y;
 static int howMany = 0;

 Point() {x=0; y=0;
 howMany++;}

 static void reset() {

 howMany = 0;
 }
}

11CS 536 Fall 2002
©

Static member functions (methods)
may not access non-static data.
(Why?)
Static members are accessed using a
class name rather than the name of
an object reference.
For example,
 Point.reset();

