
1CS 536 Fall 2002
©

CS 536

Introduction to
 Programming Languages

and Compilers

Charles N. Fischer

Fall 2002

 http://www.cs.wisc.edu/~fischer/cs536.html

2CS 536 Fall 2002
©

Recitations
Both sections:
Tuesdays, 2:25 — 3:15
113 Psychology

3CS 536 Fall 2002
©

Java & Object-Oriented
Programming

Java is a fairly new and very popular
programming language designed to
support secure, platform-independent
programming.
It is a good alternative to C or C++,
trading a bit of efficiency for easier
programming, debugging and
maintenance.
Java is routinely interpreted (at the
byte-code level), making it
significantly slower than compiled C
or C++. However true Java compilers
exist, and are becoming more wide-
spread. (IBM’s Jalapeno project is a
good example). When compiled,
Java’s execution speed is close to that
of C or C++.

4CS 536 Fall 2002
©

Basic Notions
In Java data is either primitive or an
object (an instance of some class).
All code is written inside classes, so
Java programming consists of writing
classes.
Primitive data types are quite close to
those of C or C++:
boolean (not a numeric type)
char (Unicode, 16 bits)
byte

short

int

long (64 bits)
float

double

5CS 536 Fall 2002
©

Objects
• All Java objects are instances of classes.

• All objects are heap-allocated, with
automatic garbage collection.

• A reference to an object, in a variable,
parameter or another object, is actually a
pointer to some object allocated within
the heap.

• No explicit pointer manipulation
operations (like * or -> or ++) are
needed or allowed.

• Example:
class Point {int x,y;}

 Point data = new Point();

6CS 536 Fall 2002
©

• Declaring an object reference (like class
Point) does not automatically allocate
space for an object. The reference is
initialized to null unless an explicit
initializer is included.

• Fields are accessed just as they are in C:
data.x references field x in object
data .

• Object references are automatically
checked for validity (null or non-null).
Hence
data.x = 0;
forces a run-time exception if data
contains null rather than a valid object
reference.

7CS 536 Fall 2002
©

• Java makes it impossible for an object
reference to access an illegal address. A
reference is either null or a pointer to a
valid, type-correct object in the heap.
(This makes Java programs far more
secure and reliable than C or C++
programs).

8CS 536 Fall 2002
©

Class Members
Classes contain members. Class
members are either fields (data) or
methods (functions).
Example:
 class Point {

 int x,y;

 void clear() {x=0; y=0;}
 }

 Point d = new Point():

 d.clear();

A special method is a constructor.
A constructor has no result type. It is
used only to define the initialization
of an object after the object has been
created.

9CS 536 Fall 2002
©

Constructors may be overloaded.

class Point {

 int x,y;

 Point() {x=0; y=0;}

 Point(int xin, int yin) {

 x = xin; y = yin;
 }
}

10CS 536 Fall 2002
©

Static Members
Class members may be static.
A static member is allocated only
once—for all instances of the class.
Ordinary members (called instance
members) apply only to a particular
class instance (i.e., only one object
created from the class definition).
class Point {

 int x,y;
 static int howMany = 0;

 Point() {x=0; y=0;
 howMany++;}

 static void reset() {

 howMany = 0;
 }
}

11CS 536 Fall 2002
©

Static member functions (methods)
may not access non-static data.
(Why?)
Static members are accessed using a
class name rather than the name of
an object reference.
For example,
 Point.reset();

12CS 536 Fall 2002
©

Visibility of Class Members
Class members may be declared as
public, private or protected.
Public members may be accessed from
outside a class.
Private members of a class may be
accessed only from with the class
itself.
Protected members may be accessed
only from with the class itself or from
within one of its subclasses.
Members nor marked public, private
or protected are shared at the
package level—similar to C++’s friend
mechanism.

13CS 536 Fall 2002
©

Example:
 class Customer {

 int id;

 private int pinCode;

}

Customer me = new Customer();

me.id = 1234; //OK

me.pinCode = 7777;
//Compile-time error

In a class, a special method, main ,
declared as
 static public void
 main(String[] args)

is automatically executed when a
class is run.
main is very useful as a “test driver”
for auxiliary and library classes.

14CS 536 Fall 2002
©

Final Members
A field may be declared final making
it effectively a constant.
class Point {

 int x,y;

 static final Point origin
= new Point(0,0);

 Point(int xin, int yin) {

 x = xin; y = yin;
 }
}

Final fields may be used to create
constants within a class:
class Card {
 final static int Clubs = 1;
 final static int Diamonds = 2;
 final static int Hearts = 3;
 final static int Spades = 4;
 int suit = Spades;
}

15CS 536 Fall 2002
©

Inside a class suit names are available
for use without qualification. E.g.,
int suit = Spades;

Outside a class, the field names must
be qualified using the class name:
Card c = new Card();

c.suit = Card.Clubs;

Methods may also be marked as final.
This forbids redeclaration in a
subclass, allowing a more efficient
implementation. Security may also be
improved if a key method is known to
be unchangeable.

16CS 536 Fall 2002
©

Java Arrays
In Java, arrays are implemented as a
special kind of class. Arrays of
primitive types are implemented as an
object that contains a block of values
within it. Arrays of objects are
implemented as an object that
contains a block of object references
within it. Allocating an array of
objects does not allocate the objects
themselves. Hence within an array of
objects, some positions may reference
actual objects while other may
contain null (this can be
advantageous) if objects are large.
Multi-dimensional arrays are arrays
of arrays. Arrays within an array need
not all have the same size.
Hence we may see

17CS 536 Fall 2002
©

int[][] TwoDim = new int[3][];

TwoDim[0] = new int[1];

TwoDim[1] = new int[2];

TwoDim[2] = new int[3];

The size of an array is part of its
value; not its type.
Thus
int [] A = new int[10];

int [] B = new int[5];

A = B;

is valid.
Pascal showed that making an array’s
size part of its type is undesirable.
(Why?)
Still, forcing an array to have a fixed
size can be necessary (e.g., an array
indexed by months). (How do we
simulate a fixed-size array?).

18CS 536 Fall 2002
©

Subclassing in Java
When a new class is defined in terms
of an existing class, the new class
extends the existing class. The new
class inherits all public and protected
members of its parent (or base) class.
The new class may add new methods
or fields. It may also redefine
inherited methods or fields.
class Point {

 int x,y;
 Point(int xin, int yin) {
 x = xin; y = yin;
 }
 static float dist(
 Point P1, Point P2) {
 return (float) Math.sqrt(
 (P1.x-P2.x)*(P1.x-P2.x)+

(P1.y-P2.y)*(P1.y-P2.y));
 }
}

19CS 536 Fall 2002
©

class Point3 extends Point {

 int z;
 Point3(int xin, int yin,
 int zin) {
 super(xin,yin); z=zin;
 }
 static float dist(
 Point3 P1, Point3 P2) {
 float d=Point.dist(P1,P2);
 return (float) Math.sqrt(
 (P1.z-P2.z)*(P1.z-P2.z)+

 d*d);
 }
}

Note that although Point3 redefines
dist , the old definition of dist is
still available by using the parent
class as a qualifier (Point.dist).
The same is true for fields that are
hidden when a field in a parent is
redeclared.

20CS 536 Fall 2002
©

Non-static methods are automatically
virtual: a redefined method is
automatically used in all inherited
methods including those defined in
parent classes that think they are
using an earlier definition of the
class.
Example:
 class C {

 void DoIt()(PrintIt();}
 void PrintIt()
 {println("C rules!");}
 }
 class D extends C {
 void PrintIt()
 {println("D rules!");}
 void TestIt() {DoIt();}
 }
 D dvar = new D();
 dvar.TestIt();

D rules! is printed.

21CS 536 Fall 2002
©

Static methods in Java are not virtual
(this can make them easier to
implement efficiently).

22CS 536 Fall 2002
©

Abstract Classes and Methods
Sometimes a Java class is not meant
to be used by itself because it is
intentionally incomplete.
Rather, the class is meant to be
starting point for the creation (via
subclassing) of more complete
classes.
Such classes are abstract.
Example:
abstract class Shape {

 Point location;

}

class Circle extends Shape {

 float radius;

}

23CS 536 Fall 2002
©

Methods can also be made abstract to
indicate that their actual definition
will appear in subclasses:
abstract class Shape {
 Point location;
 abstract float area();
}
class Circle extends Shape {
 float radius;
 float area(){
 return Math.pi*radius*radius;
 }
}

24CS 536 Fall 2002
©

Subtyping and Inheritance
We can use a subtyping mechanism,
as found in C++ or Java, for two
different purposes:
• We may wish to inherit the actual

implementations of classes and
members to use as the basis of a
more complete or extended class.
To inherit an implementation, we say
a given class “extends” an existing
class:
class Derived extends Base
 { ... };

Class Derived contains all of the
members of Base plus any others it
cares to add.

25CS 536 Fall 2002
©

• We may wish to inherit an interface—
a set of method names and values
that will be available for use.
To inherit (or claim) an interface, we
use a Java interface definition.
An interface doesn’t implement
anything; rather, it gives a name to a
set of operations or values that may
be available within one or more
classes.

26CS 536 Fall 2002
©

Why are Interfaces Important?
Many classes, although very different,
share a common subset of values or
operations. We may be willing to use
any such class as long as only
interface values or operations are
used.
For example, many objects can be
ordered (or at least partially-ordered)
using a “less than” operation.
If we always implement less than the
same way, for example,
boolean lessThan(Object o1,

 Object o2);

then we can create an interface that
admits all classes that know about
the lessThan function:

27CS 536 Fall 2002
©

interface Compare {

 boolean lessThan(Object o1,
 Object o2);

}

Now different classes can each
implement the Compare interface,
proclaiming to the world that they
know how to compare objects of the
class they define:
class IntCompare implements Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return ((Integer)i1).intValue() <
 ((Integer)i2).intValue();}
}
class StringCompare implements
 Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return
((String)i1).compareTo((String)i2)<0;
}}

28CS 536 Fall 2002
©

The advantage of using interfaces is
that we can now define a method or
class that only depends on the given
interface, and which will accept any
type that implements that interface.
class PrintCompare {
 public static void printAns(
 Object v1, Object v2, Compare c){
 System.out.println(
 v1.toString() + " < " +

v2.toString() + " is " +
 new Boolean(c.lessThan(v1,v2))
 .toString());
} }
class Test {
 public static void
 main(String args[]){
 Integer i1 = new Integer(2);
 Integer i2 = new Integer(1);
 PrintCompare.printAns(
 i1,i2,new IntCompare());
 String s2 = "abcdef";
 String s1 = "xyzaa";
 PrintCompare.printAns(
 s1,s2,new StringCompare());}}

29CS 536 Fall 2002
©

Since classes may have many methods
and modes of use or operation, a
given class may implement many
different interfaces. For example,
many classes support the Clonable
interface, which states that objects of
the class may be duplicated (cloned).

30CS 536 Fall 2002
©

Exceptions in Java
Java provides a fairly elaborate
exception handling mechanism based
on the throw-catch model.
All exceptions are objects, required to
be a subclass of Throwable .
Class Throwable has two subclasses,
Exception and Error . Class
Exception has a subclass
RuntimeException .
Exceptions may be explicitly thrown
(using a throw statement) or they
may be implicitly thrown as the result
of a run-time error.
For example, an
ArithmeticException is thrown for
certain run-time arithmetic errors,
like division by zero.

31CS 536 Fall 2002
©

Unlike other languages, Java divides
exceptions into two general classes:
checked and unchecked.
A checked exception must either be
caught (using a try-catch block) or
propagated (by marking a method as
throwing the exception).
This means that checked exceptions
cannot be ignored—you must be
prepared to catch them or you must
“advertise” to your callers that you
may throw an exception back to
them.
Unchecked exceptions need not be
caught or marked as potentially
thrown. This makes exception
handling for such exceptions
optional. Unchecked exceptions are
typically those that might occur so

32CS 536 Fall 2002
©

often (like NullPointerException
or ArithmeticException) that
forced checks could unnecessarily
clutter a program without significant
benefit.
How are checked and unchecked
exceptions distinguished?
• Any exception that is a member (or

subclass) of Error or
RuntimeException is unchecked.

• All other exceptions must be checked.
Exceptions are propagated
dynamically:
• When an exception is thrown

(explicitly or implicitly) the
innermost try-catch block that can
“catch” the exception is selected, and

33CS 536 Fall 2002
©

the catch block that matches the
exception is executed.

• A catch block “catches” a given
exception if the class of the
exception is the same as the class
used in the catch. An exception that
is a subclass of the catch’s exception
class will also be caught.
Thus an catch that handles class
Throwable catches all exceptions.

• If no catch can handle the exception
in the current method, a return to the
method’s caller is forced, and the
exception is rethrown from the point
of call.

• This process is repeated until a catch
that can handle the exception is
found or until we force a return from
the main method.

34CS 536 Fall 2002
©

• If a return from the main method is
forced, no handler exists. A run-time
error message is printed (“Uncaught
exception”) and execution is
terminated.

• One of the limitations of Java’s
exception mechanism (and similar
mechanisms found in other
languages) is that there is no “retry”
mechanism. Once an exception is
thrown, we never go back to the
point where the exception occurred.
This is why Scheme’s call/cc
mechanism is considered so special
and unique.

35CS 536 Fall 2002
©

Example:
class badValue extends Exception{
 float value;
 badValue(float f) {value=f;} }

float sqrt(float val)
 throws badValue {
 if (val < 0.0)
 throw new badValue(val);
 else return
 (float) Math.sqrt(val); }

try {
 System.out.println(
 "Ans = " + sqrt(-123.0));
} catch (badValue b) {
 System.out.println(
 "Can't take sqrt of "+b)
}

36CS 536 Fall 2002
©

Lex/Flex/JLex
Lex is a well-known Unix scanner
generator. It builds a scanner, in C,
from a set of regular expressions that
define the tokens to be scanned.
Flex is a newer and faster version of
Lex.
Jlex is a Java version of Lex. It
generates a scanner coded in Java,
though its regular expression
definitions are very close to those
used by Lex and Flex.
Lex, Flex and JLex are largely non-
procedural. You don’t need to tell the
tools how to scan. All you need to tell
it what you want scanned (by giving
it definitions of valid tokens).

37CS 536 Fall 2002
©

This approach greatly simplifies
building a scanner, since most of the
details of scanning (I/O, buffering,
character matching, etc.) are
automatically handled.

38CS 536 Fall 2002
©

JLex
JLex is coded in Java. To use it, you
enter
java JLex.Main f.jlex

Your CLASSPATH should be set to
search the directories where JLex’s
classes are stored.
(The CLASSPATH we gave you
includes JLex’s classes).
After JLex runs (assuming there are
no errors in your token
specifications), the Java source file
f.jlex.java is created. (f stands for
any file name you choose. Thus
csx.jlex might hold token
definitions for CSX, and
csx.jlex.java would hold the
generated scanner).

39CS 536 Fall 2002
©

You compile f.jlex.java just like
any Java program, using your favorite
Java compiler.
After compilation, the class file
Yylex.class is created.
It contains the methods:
• Token yylex() which is the actual

scanner. The constructor for Yylex
takes the file you want scanned, so
new Yylex(System.in)
will build a scanner that reads from
System.in . Token is the token class
you want returned by the scanner;
you can tell JLex what class you want
returned.

• String yytext() returns the
character text matched by the last
call to yylex .

40CS 536 Fall 2002
©

A simple example of using JLex is in
~cs536-1/pubic/jlex
Just enter
make test

41CS 536 Fall 2002
©

Input to JLex
There are three sections, delimited by
%%. The general structure is:
User Code

%%

Jlex Directives

%%

Regular Expression rules

The User Code section is Java source
code to be copied into the generated
Java source file. It contains utility
classes or return type classes you
need. Thus if you want to return a
class IntlitToken (for integer
literals that are scanned), you include
its definition in the User Code
section.

42CS 536 Fall 2002
©

JLex directives are various
instructions you can give JLex to
customize the scanner you generate.
These are detailed in the JLex manual.
The most important are:
• %{

Code copied into the Yylex
class (extra fields or
methods you may want)
%}

• %eof{
Java code to be executed when
the end of file is reached
%eof}

• %type classname
classname is the return type you
want for the scanner method,
yylex()

43CS 536 Fall 2002
©

Macro Definitions
In section two you may also define
macros, that are used in section three.
A macro allows you to give a name to
a regular expression or character
class. This allows you to reuse
definitions and make regular
expression rule more readable.
Macro definitions are of the form
name = def

Macros are defined one per line.
Here are some simple examples:
Digit=[0-9]

AnyLet=[A-Za-z]

In section 3, you use a macro by
placing its name within { and } . Thus
{Digit} expands to the character
class defining the digits 0 to 9.

44CS 536 Fall 2002
©

Regular Expression Rules
The third section of the JLex input
file is a series of token definition
rules of the form
RegExpr {Java code}

When a token matching the given
RegExpr is matched, the
corresponding Java code (enclosed in
“{“ and “}”) is executed. JLex figures
out what RegExpr applies; you need
only say what the token looks like
(using RegExpr) and what you want
done when the token is matched (this
is usually to return some token
object, perhaps with some processing
of the token text).

45CS 536 Fall 2002
©

Here are some examples:
"+" {return new Token(sym.Plus);}
(" ")+ {/* skip white space */}
{Digit}+ {return new

IntToken(sym.Intlit,
newInteger(yytext().intValue()));}

46CS 536 Fall 2002
©

Regular Expressions in JLex
To define a token in JLex, the user to
associates a regular expression with
commands coded in Java.
When input characters that match a
regular expression are read, the
corresponding Java code is executed.
As a user of JLex you don’t need to
tell it how to match tokens; you need
only say what you want done when a
particular token is matched.
Tokens like white space are deleted
simply by having their associated
command not return anything.
Scanning continues until a command
with a return in it is executed.
The simplest form of regular
expression is a single string that
matches exactly itself.

47CS 536 Fall 2002
©

For example,
if {return new Token(sym.If);}

If you wish, you can quote the string
representing the reserved word
("if"), but since the string contains
no delimiters or operators, quoting it
is unnecessary.
For a regular expression operator, like
+, quoting is necessary:
"+" {return newToken(sym.Plus);}

48CS 536 Fall 2002
©

Character Classes
Our specification of the reserved word
if, as shown earlier, is incomplete. We
don’t (yet) handle upper or mixed-
case.
To extend our definition, we’ll use a
very useful feature of Lex and JLex—
character classes.
Characters often naturally fall into
classes, with all characters in a class
treated identically in a token
definition. In our definition of
identifiers all letters form a class
since any of them can be used to
form an identifier. Similarly, in a
number, any of the ten digit
characters can be used.

49CS 536 Fall 2002
©

Character classes are delimited by [
and] ; individual characters are listed
without any quotation or separators.
However \ , ^ ,] and - , because of
their special meaning in character
classes, must be escaped. The
character class [xyz] can match a
single x , y, or z .
The character class [\])] can match
a single] or) .
(The] is escaped so that it isn’t
misinterpreted as the end of character
class.)
Ranges of characters are separated by
a - ; [x-z] is the same as [xyz] .
[0-9] is the set of all digits and
[a-zA-Z] is the set of all letters,
upper- and lower-case. \ is the
escape character, used to represent

50CS 536 Fall 2002
©

unprintables and to escape special
symbols.
Following C and Java conventions, \n
is the newline (that is, end of line),
\t is the tab character, \\ is the
backslash symbol itself, and \010 is
the character corresponding to octal
10.
The ^ symbol complements a
character class (it is JLex’s
representation of the Not operation).
[^xy] is the character class that
matches any single character except
x and y. The ^ symbol applies to all
characters that follow it in a
character class definition, so [^0-9]
is the set of all characters that aren’t
digits. [^] can be used to match all
characters.

51CS 536 Fall 2002
©

Here are some examples of character
classes:

Character
Class Set of Characters Denoted
[abc] Three characters: a, b and c
[cba] Three characters: a, b and c
[a-c] Three characters: a, b and c
[aabbcc] Three characters: a, b and c
[^abc] All characters except a, b

and c
[\^\-\]] Three characters: ^ , - and]
[^] All characters
"[abc]" Not a character class. This

is one five character string:
[abc]

52CS 536 Fall 2002
©

Regular Operators in JLex
JLex provides the standard regular
operators, plus some additions.
• Catenation is specified by the

juxtaposition of two expressions; no
explicit operator is used.
Outside of character class brackets,
individual letters and numbers match
themselves; other characters should
be quoted (to avoid misinterpretation
as regular expression operators).

Case is significant.

Regular Expr Characters Matched
a b cd Four characters: abcd
(a)(b)(cd) Four characters: abcd
[ab][cd] Four different strings: ac or

ad or bc or bd
while Five characters: while
" while " Five characters: while
[w][h][i][l][e] Five characters: while

53CS 536 Fall 2002
©

• The alternation operator is | .
Parentheses can be used to control
grouping of subexpressions.
If we wish to match the reserved
word while allowing any mixture
of upper- and lowercase, we can use
(w|W)(h|H)(i|I)(l|L)(e|E)
or
[wW][hH][iI][lL][eE]

Regular Expr Characters Matched
ab|cd Two different strings: ab or cd
(ab)|(cd) Two different strings: ab or cd
[ab]|[cd] Four different strings: a or b or

c or d

54CS 536 Fall 2002
©

• Postfix operators:
* Kleene closure: 0 or more matches
(ab)* matches λ or ab or abab or
ababab ...

+ Positive closure: 1 or more matches
(ab)+ matches ab or abab or
ababab ...

? Optional inclusion:
expr?

matches expr zero times or once.
expr? is equivalent to (expr) | λ
and eliminates the need for an
explicit λ symbol.
[-+]?[0-9]+ defines an optionally
signed integer literal.

55CS 536 Fall 2002
©

• Single match:
The character ". " matches any single
character (other than a newline).

• Start of line:
The character ^ (when used outside a
character class) matches the
beginning of a line.

• End of line:
The character $ matches the end of a
line. Thus,

^A.*e$
matches an entire line that begins
with A and ends with e.

56CS 536 Fall 2002
©

Overlapping Definitions
Regular expressions map overlap
(match the same input sequence).
In the case of overlap, two rules
determine which regular expression is
matched:
• The longest possible match is

performed. JLex automatically buffers
characters while deciding how many
characters can be matched.

• If two expressions match exactly the
same string, the earlier expression (in
the JLex specification) is preferred.
Reserved words, for example, are
often special cases of the pattern
used for identifiers. Their definitions
are therefore placed before the

57CS 536 Fall 2002
©

expression that defines an identifier
token.

Often a “catch all” pattern is placed
at the very end of the regular
expression rules. It is used to catch
characters that don’t match any of
the earlier patterns and hence are
probably erroneous. Recall that ". "
matches any single character (other
than a newline). It is useful in a
catch-all pattern. However, avoid a
pattern like .* which will consume
all characters up to the next newline.
In JLex an unmatched character will
cause a run-time error.

58CS 536 Fall 2002
©

The operators and special symbols
most commonly used in JLex are
summarized below. Note that a
symbol sometimes has one meaning
in a regular expression and an entirely
different meaning in a character class
(i.e., within a pair of brackets). If you
find JLex behaving unexpectedly, it’s
a good idea to check this table to be
sure of how the operators and
symbols you’ve used behave. Ordinary
letters and digits, and symbols not
mentioned (like @) represent
themselves. If you’re not sure if a
character is special or not, you can
always escape it or make it part of a
quoted string.

59CS 536 Fall 2002
©

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

(Matches with) to group
sub-expressions.

Represents
itself.

) Matches with (to group
sub-expressions.

Represents
itself.

[Begins a character class. Represents
itself.

] Represents itself. Ends a charac-
ter class.

{ Matches with } to signal
macro-expansion.

Represents
itself.

} Matches with { to signal
macro-expansion.

Represents
itself.

" Matches with " to delimit
strings
(only \ is special within
strings).

Represents
itself.

\ Escapes individual charac-
ters.
Also used to specify a
character by its octal code.

Escapes individ-
ual characters.
Also used to
specify a char-
acter by its octal
code.

. Matches any one character
except \n.

Represents
itself.

60CS 536 Fall 2002
©

| Alternation (or) operator. Represents
itself.

* Kleene closure operator
(zero or more matches).

Represents
itself.

+ Positive closure operator
(one or more matches).

Represents
itself.

? Optional choice operator
(one or zero matches).

Represents
itself.

/ Context sensitive matching
operator.

Represents
itself.

^ Matches only at beginning
of a line.

Complements
remaining
characters in the
class.

$ Matches only at end of a
line.

Represents
itself.

- Represents itself. Range of char-
acters operator.

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

61CS 536 Fall 2002
©

Potential Problems in Using
JLex

The following differences from
“standard” Lex notation appear in
JLex:
• Escaped characters within quoted

strings are not recognized. Hence
"\n" is not a new line character.
Escaped characters outside of quoted
strings (\n) and escaped characters
within character classes ([\n]) are
OK.

• A blank should not be used within a
character class (i.e., [and]). You
may use \040 (which is the character
code for a blank).

62CS 536 Fall 2002
©

• A doublequote must be escaped
within a character class. Use [\"]
instead of ["] .

• Unprintables are defined to be all
characters before blank as well as the
last ASCII character. These can be
represented as: [\000-\037\177]

63CS 536 Fall 2002
©

JLex Examples
A JLex scanner that looks for five
letter words that begin with “P” and
end with “T”.
This example is in

~cs536-1/public/jlex

64CS 536 Fall 2002
©

The JLex specification file is:
class Token {

String text;
Token(String t){text = t;}

}
%%
Digit=[0-9]
AnyLet=[A-Za-z]
Others=[0-9’&.]
WhiteSp=[\040\n]
// Tell JLex to have yylex() return a
Token
%type Token
// Tell JLex what to return when eof of
file is hit
%eofval{
return new Token(null);
%eofval}
%%
[Pp]{AnyLet}{AnyLet}{AnyLet}[Tt]{WhiteSp}+

{return new Token(yytext());}

({AnyLet}|{Others})+{WhiteSp}+
{/*skip*/}

65CS 536 Fall 2002
©

The Java program that uses the
scanner is:
import java.io.*;

class Main {

public static void main(String args[])
throws java.io.IOException {

Yylex lex = new Yylex(System.in);
Token token = lex.yylex();

while (token.text != null) {
System.out.print("\t"+token.text);
token = lex.yylex(); //get next token

}
}}

66CS 536 Fall 2002
©

In case you care, the words that are
matched include:

Pabst

paint

petit

pilot

pivot

plant

pleat

point

posit

Pratt

print

67CS 536 Fall 2002
©

A JLex tester that looks for matches
of regular expressions being tested.
This example is in

~cs536-1/public/jlex.tester

68CS 536 Fall 2002
©

The JLex specification file is:
class Token {

String text;
Token(String t){text = t;}

}
%%
Digit=[0-9]
AnyLet=[A-Za-z]
Others=[0-9’&.]
WhiteSp=[\040\n]
// Tell JLex to have yylex() return a
Token
%type Token
// Tell JLex what to return when eof of
file is hit
%eofval{
return new Token(null);
%eofval}
%%
testRE {return new Token(yytext());}
{WhiteSp}+ {/*skip*/}
(.) {System.out.println(

"Illegal:"+yytext());}

69CS 536 Fall 2002
©

The Java program that uses this
scanner tester is:
import java.io.*;

class Main {

public static void main(String args[])
throws java.io.IOException {

Yylex lex = new Yylex(System.in);
Token token = lex.yylex();

while (token.text != null) {
System.out.print("Matched:"+

token.text);
token = lex.yylex(); //get next token

}
}}

70CS 536 Fall 2002
©

An example of CSX token
specifications. This example is in

~cs536-1/public/proj2/startup

71CS 536 Fall 2002
©

The JLex specification file is:
import java_cup.runtime.*;

/* Expand this into your solution for
project 2 */

class CSXToken {
int linenum;
int colnum;
CSXToken(int line,int col){
linenum=line;colnum=col;};

}

class CSXIntLitToken extends CSXToken {
int intValue;
CSXIntLitToken(int val,int line,

int col){
super(line,col);intValue=val;};

}

class CSXIdentifierToken extends
CSXToken {
String identifierText;
CSXIdentifierToken(String text,int line,

int col){
super(line,col);identifierText=text;};

}

72CS 536 Fall 2002
©

class CSXCharLitToken extends CSXToken {
char charValue;

CSXCharLitToken(char val,int line,
int col){

super(line,col);charValue=val;};
}

class CSXStringLitToken extends CSXToken
{

String stringText;
CSXStringLitToken(String text,

int line,int col){
super(line,col);
stringText=text; };

}

// This class is used to track line and
column numbers
// Feel free to change to extend it
class Pos {
static int linenum = 1;
/* maintain this as line number current

token was scanned on */
static int colnum = 1;

/* maintain this as column number
current token began at */

static int line = 1;
/* maintain this as line number after

scanning current token */

73CS 536 Fall 2002
©

static int col = 1;
/* maintain this as column number

after scanning current token */
static void setpos() {

//set starting pos for current token
linenum = line;
colnum = col;}

}

%%
Digit=[0-9]

// Tell JLex to have yylex() return a
Symbol, as JavaCUP will require

%type Symbol

// Tell JLex what to return when eof of
file is hit
%eofval{
return new Symbol(sym.EOF,

new CSXToken(0,0));
%eofval}

%%
"+" {Pos.setpos(); Pos.col +=1;

 return new Symbol(sym.PLUS,
new CSXToken(Pos.linenum,

Pos.colnum));}

74CS 536 Fall 2002
©

"!=" {Pos.setpos(); Pos.col +=2;
return new Symbol(sym.NOTEQ,

new CSXToken(Pos.linenum,
Pos.colnum));}

";" {Pos.setpos(); Pos.col +=1;
return new Symbol(sym.SEMI,

new CSXToken(Pos.linenum,
Pos.colnum));}

{Digit}+ {// This def doesn’t check
// for overflow

Pos.setpos();
Pos.col += yytext().length();
return new Symbol(sym.INTLIT,

new CSXIntLitToken(
new Integer(yytext()).intValue(),
Pos.linenum,Pos.colnum));}

\n {Pos.line +=1; Pos.col = 1;}
" " {Pos.col +=1;}

75CS 536 Fall 2002
©

The Java program that uses this
scanner (P2) is:
class P2 {

public static void main(String args[])
throws java.io.IOException {

if (args.length != 1) {
System.out.println(
"Error: Input file must be named on

command line.");
System.exit(-1);

}
java.io.FileInputStream yyin = null;
try {

yyin =
new java.io.FileInputStream(args[0]);

} catch (FileNotFoundException
notFound){

System.out.println(
"Error: unable to open input file.”);

System.exit(-1);
}

// lex is a JLex-generated scanner that
// will read from yyin

Yylex lex = new Yylex(yyin);

76CS 536 Fall 2002
©

System.out.println(
"Begin test of CSX scanner.");

/**********************************
You should enter code here that
thoroughly test your scanner.

Be sure to test extreme cases,
like very long symbols or lines,
illegal tokens, unrepresentable
integers, illegals strings, etc.
The following is only a starting point.

***********************************/
Symbol token = lex.yylex();

while (token.sym != sym.EOF) {
System.out.print(

((CSXToken) token.value).linenum
+ ":"
+ ((CSXToken) token.value).colnum
+ " ");

switch (token.sym) {
case sym.INTLIT:

System.out.println(
"\tinteger literal(" +
((CSXIntLitToken)
token.value).intValue + ")");

break;

77CS 536 Fall 2002
©

 case sym.PLUS:
System.out.println("\t+");
break;

 case sym.NOTEQ:
System.out.println("\t!=");
break;

 default:
throw new RuntimeException();

}

token = lex.yylex(); // get next token
}

System.out.println(
"End test of CSX scanner.");

}}}

78CS 536 Fall 2002
©

Java CUP
Java CUP is a parser-generation tool,
similar to Yacc.
CUP builds a Java parser for LALR(1)
grammars from production rules and
associated Java code fragments.
When a particular production is
recognized, its associated code
fragment is executed (typically to
build an AST).
CUP generates a Java source file
parser.java. It contains a class parser,
with a method

Symbol parse()
The Symbol returned by the parser is
associated with the grammar’s start
symbol and contains the AST for the
whole source program.

79CS 536 Fall 2002
©

The file sym.java is also built for use
with a JLex-built scanner (so that
both scanner and parser use the same
token codes).
If an unrecovered sytntax error
occurs, Exception() is thrown by the
parser.
CUP and Yacc accept exactly the same
class of grammars—all LL(1)
grammars, plus many useful non-
LL(1) grammars.
CUP is called as

java java_cup.Main < file.cup

80CS 536 Fall 2002
©

Java CUP Specifications
Java CUP specifications are of the
form:
• Package and import specifications

• User code additions

• Terminal and non-terminal
declarations

• A context-free grammar, augmented
with Java code fragments

Package and Import Specifications
You define a package name as:
package name ;

You add imports to be used as:
import java_cup.runtime.*;

81CS 536 Fall 2002
©

User Code Additions
You may define Java code to be
included within the generated parser:
action code {: /*java code */ :}
This code is placed within the
generated action class (which holds
user-specified production actions).

parser code {: /*java code */ :}
This code is placed within the
generated parser class .

init with{: /*java code */ :}
This code is used to initialize the
generated parser.

scan with{: /*java code */ :}
This code is used to tell the generated
parser how to get tokens from the
scanner.

82CS 536 Fall 2002
©

Terminal and Non-terminal
Declarations

You define terminal symbols you will
use as:
terminal classname name 1, name 2, ...

classname is a class used by the
scanner for tokens (CSXToken,
CSXIdentifierToken , etc.)

You define non-terminal symbols you
will use as:
non terminal classname name 1, name 2, ...

classname is the class for the AST
node associated with the non-
terminal (stmtNode , exprNode , etc.)

83CS 536 Fall 2002
©

Production Rules
Production rules are of the form
name ::= name 1 name 2 ... action ;

or
name ::= name 1 name2 ... action 1

| name 3 name 4 ... action 2
| ...
;

Names are the names of terminals or
non-terminals, as declared earlier.
Actions are Java code fragments, of
the form
{: /*java code */ :}

The Java object assocated with a
symbol (a token or AST node) may be
named by adding a :id suffix to a
terminal or non-terminal in a rule.
RESULT names the left-hand side
non-terminal.

84CS 536 Fall 2002
©

The Java classes of the symbols are
defined in the terminal and non-
terminal declaration sections.
For example,
prog ::= LBRACE:l stmts:s RBRACE

{: RESULT=
new csxLiteNode(s,

l.linenum,l.colnum); :}

This corresponds to the production
prog → { stmts }
The left brace is given the name l ;
the stmts non-terminal is called s .
In the action code, a new
CSXLiteNode is created and assigned
to prog . It is constructed from the
AST node associated with s . Its line
and column numbers are those given
to the left barce, l (by the scanner).

85CS 536 Fall 2002
©

To tell CUP what non-terminal to use
as the start symbol (prog in our
example), we use the directive:
start with prog;

86CS 536 Fall 2002
©

Example
Let’s look at the CUP specification for
CSX-lite. Recall its CFG is
program → { stmts }
stmts → stmt stmts

| λ
stmt → id = expr ;

| if (expr) stmt
expr → expr + id

| expr - id
| id

87CS 536 Fall 2002
©

The corresponding CUP specification
is:
/***
This Is A Java CUP Specification For
CSX-lite, a Small Subset
of The CSX Language, Used In Cs536
 ***/

/* Preliminaries to set up and use
the scanner. */

import java_cup.runtime.*;
parser code {:
 public void syntax_error

(Symbol cur_token){
 report_error(

“CSX syntax error at line “+
String.valueOf(((CSXToken)

cur_token.value).linenum),
null);}

:};

init with {: :};
scan with {:

return Scanner.next_token();
:};

88CS 536 Fall 2002
©

/* Terminals (tokens returned by the
scanner). */
terminal CSXIdentifierToken
IDENTIFIER;
terminal CSXToken SEMI, LPAREN,
RPAREN, ASG, LBRACE, RBRACE;
terminal CSXToken PLUS, MINUS,
rw_IF;

/* Non terminals */
non terminal csxLiteNode prog;
non terminal stmtsNode stmts;
non terminal stmtNode stmt;
non terminal exprNode exp;
non terminal nameNode ident;

start with prog;

prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

89CS 536 Fall 2002
©

stmts::= stmt:s1 stmts:s2
 {: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

 :}
|
 {: RESULT= stmtsNode.NULL; :}
;
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

| rw_IF:i LPAREN exp:e RPAREN stmt:s

 {: RESULT=new ifThenNode(e,s,
 stmtNode.NULL,

i.linenum,i.colnum); :}
;
exp::=

exp:leftval PLUS:op ident:rightval
{: RESULT=new binaryOpNode(leftval,

sym.PLUS, rightval,
op.linenum,op.colnum); :}

90CS 536 Fall 2002
©

| exp:leftval MINUS:op ident:rightval

{: RESULT=new binaryOpNode(leftval,
sym.MINUS,rightval,
op.linenum,op.colnum); :}

| ident:i
 {: RESULT = i; :}
;
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(

new identNode(i.identifierText,
 i.linenum,i.colnum),

exprNode.NULL,
i.linenum,i.colnum); :}

;

91CS 536 Fall 2002
©

Let’s parse
{ a = b ; }

First, a is parsed using
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(

new identNode(i.identifierText,
 i.linenum,i.colnum),

exprNode.NULL,
i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
a

92CS 536 Fall 2002
©

Next, a is parsed using
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(

new identNode(i.identifierText,
 i.linenum,i.colnum),

exprNode.NULL,
i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
b

93CS 536 Fall 2002
©

Then b’s subtree is recognized as an
exp:
| ident:i
 {: RESULT = i; :}

Now the assignment statement is
recognized:
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

We build

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

94CS 536 Fall 2002
©

The stmts → λ production is
matched (indicating that there are no
more statements in the program).
CUP matches
stmts::=
 {: RESULT= stmtsNode.NULL; :}

and we build

Next,
stmts → stmt stmts
is matched using
stmts::= stmt:s1 stmts:s2
 {: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

 :}

nullStmtsNode

95CS 536 Fall 2002
©

This builds

As the last step of the parse, the
parser matches
program → { stmts }
using the CUP rule
prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

96CS 536 Fall 2002
©

The final AST reurned by the parser is

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

csxLiteNode

97CS 536 Fall 2002
©

Sample Type-Checking
Routines for CSX-Lite

// abstract superclass; only
subclasses are actually created
abstract class ASTNode {
// Total number of type errors found
static int typeErrors = 0;

static void typeMustBe(int testType,
int requiredType,String errorMsg) {

 if ((testType != Types.Error) &&
(testType != requiredType)) {

System.out.println(errorMsg);
typeErrors++;
}

}

98CS 536 Fall 2002
©

static void typesMustBeEqual(
int type1,int type2,String errorMsg)
{
 if ((type1 != Types.Error) &&

(type2 != Types.Error) &&
(type1 != type2)) {

System.out.println(errorMsg);
typeErrors++;
}}

String error() {
return “Error (line “ + linenum +

“): “;}

public static SymbolTable st =
new SymbolTable();

void checkTypes(){};
// This will normally need to be
// redefined in a subclass

99CS 536 Fall 2002
©

// This node is used to root only
// CSX lite programs
class csxLiteNode extends ASTNode {

void checkTypes(){
fields.checkTypes();
progStmts.checkTypes();

}
boolean isTypeCorrect() {

checkTypes();
return (typeErrors == 0);

 };

private stmtsNode progStmts;
private fieldDeclsNode fields;

};

100CS 536 Fall 2002
©

// Root of all ASTs for CSX
class classNode extends ASTNode {

// You need to refine this one
boolean isTypeCorrect() {

return true;};

private identNodeclassName;
private memberDeclsNodemembers;

};

class fieldDeclsNode extends ASTNode
{

void checkTypes() {
thisField.checkTypes();
moreFields.checkTypes();

};

private declNodethisField;
private fieldDeclsNode moreFields;

};

101CS 536 Fall 2002
©

class nullFieldDeclsNode extends
fieldDeclsNode {

void checkTypes(){};
};

class varDeclNode extends declNode {
void checkTypes() {

SymbolInfo id;
id = (SymbolInfo)
st.localLookup(varName.idname);
if (id != null) {

 System.out.println(error() +
id.name()+
“ is already declared.”);
typeErrors++;
varName.type =

new Types(Types.Error);
} else {

id =
new SymbolInfo(varName.idname,

new Kinds(Kinds.Var),
varType.type);

varName.type = varType.type;
try {

st.insert(id);

102CS 536 Fall 2002
©

} catch (DuplicateException d)
{ /* can’t happen */ }

catch (EmptySTException e)
{ /* can’t happen */ }

varName.idinfo=id;
}

};
privateidentNodevarName;
privatetypeNode varType;
privateexprNode initValue;

};

abstract class typeNode extends
ASTNode {
// abstract superclass; only
// subclasses are actually created

Types type;
// Used for typechecking
// -- the type of this typeNode

};

103CS 536 Fall 2002
©

class intTypeNode extends typeNode {
intTypeNode(int line, int col){

super(line,col, new
Types(Types.Integer));

}
void checkTypes() {

// No type checking needed
}

};

class stmtsNode extends ASTNode {
void checkTypes() {

thisStmt.checkTypes();
moreStmts.checkTypes();

};

private stmtNodethisStmt;
private stmtsNode moreStmts;

};

104CS 536 Fall 2002
©

class nullStmtsNode extends
stmtsNode {

void checkTypes(){};
};

class asgNode extends stmtNode {
void checkTypes() {

target.checkTypes();
source.checkTypes();
//In CSX-lite all IDs are vars!
assert(target.kind.val ==

Kinds.Var);
typesMustBeEqual(source.type.val,

target.type.val,
error() +
“Both the left and right” +

“ hand sides of an assignment must “
+ “have the same type.”);

}

private nameNodetarget;
private exprNode source;

};

105CS 536 Fall 2002
©

class ifThenNode extends stmtNode {
void checkTypes() {

condition.checkTypes();
typeMustBe(condition.type.val,

Types.Boolean,
error() +
“The control expression of an”
+ “ if must be a bool.”);

thenPart.checkTypes();
// No else parts in CSX Lite

};
private exprNode condition;
private stmtNode thenPart;
private stmtNode elsePart;

};

106CS 536 Fall 2002
©

class printNode extends stmtNode {
void checkTypes() {
outputValue.checkTypes();
typeMustBe(outputValue.type.val,

Types.Integer,
error() +

“Only int values may be printed.”);
};

private exprNode outputValue;
private printNode morePrints;

};

// abstract superclass;
// only subclasses are actually
//created
abstract class exprNode extends
ASTNode {

protected Types type;
// Used for typechecking:
// the type of this node
protected Kinds kind;
// Used for typechecking:
// the kind of this node

};

107CS 536 Fall 2002
©

class binaryOpNode extends exprNode
{

void checkTypes() {
//Only two bin ops in CSX-lite
assert(operatorCode== sym.PLUS

||operatorCode==sym.MINUS);
leftOperand.checkTypes();
rightOperand.checkTypes();
type = new Types(Types.Integer);

typeMustBe(leftOperand.type.val,
Types.Integer,

error() +
“Left operand of” +
toString(operatorCode)
+ “must be an int.”);

typeMustBe(rightOperand.type.val,
Types.Integer,

error() + “Right operand of” +
toString(operatorCode)

+ “must be an int.”);
};
private exprNode leftOperand;
private exprNode rightOperand;
private int operatorCode;

};

108CS 536 Fall 2002
©

class identNode extends exprNode {
void checkTypes() {

SymbolInfo id;
//In CSX-lite all IDs are vars!
assert(kind.val == Kinds.Var);

id = (SymbolInfo)
st.localLookup(idname);

if (id == null) {
System.out.println(error() +

idname +“ is not declared.”);
typeErrors++;
type = new Types(Types.Error);

} else {
type = id.type;
idinfo = id;
// Save ptr to sym table entry

}
}

publicString idname;
public SymbolInfo idinfo;
// sym table entry for this ident
private boolean nullFlag;

};

109CS 536 Fall 2002
©

class intLitNode extends exprNode {
void checkTypes() {
// All intLits are automatically
// type-correct
}
private int intval;

};

class nameNode extends exprNode {
void checkTypes() {

varName.checkTypes();
// Subscripts not in CSX Lite
type=varName.type;

};

private identNode varName;
private exprNode subscriptVal;

};
}

