
90CS 536 Spring 2005
©

Deterministic Finite Automata
As an abbreviation, a transition may
be labeled with more than one
character (for example, Not(c)). The
transition may be taken if the current
input character matches any of the
characters labeling the transition.
If an FA always has a unique
transition (for a given state and
character), the FA is deterministic
(that is, a deterministic FA, or DFA).
Deterministic finite automata are
easy to program and often drive a
scanner.
If there are transitions to more than
one state for some character, then the
FA is nondeterministic (that is, an
NFA).

91CS 536 Spring 2005
©

A DFA is conveniently represented in
a computer by a transition table. A
transition table, T, is a two
dimensional array indexed by a DFA
state and a vocabulary symbol.
Table entries are either a DFA state or
an error flag (often represented as a
blank table entry). If we are in state
s, and read character c, then T[s,c]
will be the next state we visit, or
T[s,c] will contain an error marker
indicating that c cannot extend the
current token. For example, the
regular expression

// Not(Eol) * Eol

which defines a Java or C++ single-
line comment, might be translated
into

92CS 536 Spring 2005
©

The corresponding transition table is:

A complete transition table contains
one column for each character. To
save space, table compression may be
used. Only non-error entries are
explicitly represented in the table,
using hashing, indirection or linked
structures.

State Character
/ Eol a b …

1 2
2 3
3 3 4 3 3 3
4

eof

Eol/ /

Not(Eol)

1 2 3 4

93CS 536 Spring 2005
©

All regular expressions can be
translated into DFAs that accept
(as valid tokens) the strings defined
by the regular expressions. This
translation can be done manually by a
programmer or automatically using a
scanner generator.
A DFA can be coded in:
• Table-driven form

• Explicit control form
In the table-driven form, the
transition table that defines a DFA’s
actions is explicitly represented in a
run-time table that is “interpreted”
by a driver program.
In the direct control form, the
transition table that defines a DFA’s
actions appears implicitly as the
control logic of the program.

94CS 536 Spring 2005
©

For example, suppose CurrentChar is
the current input character. End of
file is represented by a special
character value, eof . Using the DFA
for the Java comments shown earlier,
a table-driven scanner is:
State = StartState

while (true){

if (CurrentChar == eof)
break

NextState =
T[State][CurrentChar]

 if(NextState == error)
break

State = NextState

read(CurrentChar)

}

if (State in AcceptingStates)

// Process valid token

else // Signal a lexical error

95CS 536 Spring 2005
©

This form of scanner is produced by a
scanner generator; it is definition-
independent. The scanner is a driver
that can scan any token if T contains
the appropriate transition table.
Here is an explicit-control scanner for
the same comment definition:
if (CurrentChar == '/'){

read(CurrentChar)

if (CurrentChar == '/')

repeat

read(CurrentChar)

until (CurrentChar in

{eol, eof})

else //Signal lexical error

else // Signal lexical error

if (CurrentChar == eol)

// Process valid token

else //Signal lexical error

96CS 536 Spring 2005
©

The token being scanned is
“hardwired” into the logic of the
code. The scanner is usually easy to
read and often is more efficient, but
is specific to a single token definition.

97CS 536 Spring 2005
©

More Examples
• A FORTRAN-like real literal (which

requires digits on either or both sides
of a decimal point, or just a string of
digits) can be defined as

RealLit = (D + (λ | .)) | (D* . D+)

This corresponds to the DFA

. D

DD

D .

98CS 536 Spring 2005
©

• An identifier consisting of letters,
digits, and underscores, which begins
with a letter and allows no adjacent
or trailing underscores, may be
defined as

ID = L (L | D) * (_ (L | D)+)*

This definition includes identifiers
like sum or unit_cost , but
excludes _one and two_ and
grand___total . The DFA is:

L | D

L

L | D

_

99CS 536 Spring 2005
©

Lex/Flex/JLex
Lex is a well-known Unix scanner
generator. It builds a scanner, in C,
from a set of regular expressions that
define the tokens to be scanned.
Flex is a newer and faster version of
Lex.
Jlex is a Java version of Lex. It
generates a scanner coded in Java,
though its regular expression
definitions are very close to those
used by Lex and Flex.
Lex, Flex and JLex are largely non-
procedural. You don’t need to tell the
tools how to scan. All you need to tell
it what you want scanned (by giving
it definitions of valid tokens).

100CS 536 Spring 2005
©

This approach greatly simplifies
building a scanner, since most of the
details of scanning (I/O, buffering,
character matching, etc.) are
automatically handled.

101CS 536 Spring 2005
©

JLex
JLex is coded in Java. To use it, you
enter
java JLex.Main f.jlex

Your CLASSPATH should be set to
search the directories where JLex’s
classes are stored.
(The CLASSPATH we gave you
includes JLex’s classes).
After JLex runs (assuming there are
no errors in your token
specifications), the Java source file
f.jlex.java is created. (f stands for
any file name you choose. Thus
csx.jlex might hold token
definitions for CSX, and
csx.jlex.java would hold the
generated scanner).

102CS 536 Spring 2005
©

You compile f.jlex.java just like
any Java program, using your favorite
Java compiler.
After compilation, the class file
Yylex.class is created.
It contains the methods:
• Token yylex() which is the actual

scanner. The constructor for Yylex
takes the file you want scanned, so
new Yylex(System.in)
will build a scanner that reads from
System.in . Token is the token class
you want returned by the scanner;
you can tell JLex what class you want
returned.

• String yytext() returns the
character text matched by the last
call to yylex .

103CS 536 Spring 2005
©

A simple example of using JLex is in
~cs536-1/pubic/jlex
Just enter
make test

104CS 536 Spring 2005
©

Input to JLex
There are three sections, delimited by
%%. The general structure is:
User Code

%%

Jlex Directives

%%

Regular Expression rules

The User Code section is Java source
code to be copied into the generated
Java source file. It contains utility
classes or return type classes you
need. Thus if you want to return a
class IntlitToken (for integer
literals that are scanned), you include
its definition in the User Code
section.

105CS 536 Spring 2005
©

JLex directives are various
instructions you can give JLex to
customize the scanner you generate.
These are detailed in the JLex manual.
The most important are:
• %{

Code copied into the Yylex
class (extra fields or
methods you may want)
%}

• %eof{
Java code to be executed when
the end of file is reached
%eof}

• %type classname
classname is the return type you
want for the scanner method,
yylex()

106CS 536 Spring 2005
©

Macro Definitions
In section two you may also define
macros, that are used in section three.
A macro allows you to give a name to
a regular expression or character
class. This allows you to reuse
definitions and make regular
expression rule more readable.
Macro definitions are of the form
name = def

Macros are defined one per line.
Here are some simple examples:
Digit=[0-9]

AnyLet=[A-Za-z]

In section 3, you use a macro by
placing its name within { and } . Thus
{Digit} expands to the character
class defining the digits 0 to 9.

107CS 536 Spring 2005
©

Regular Expression Rules
The third section of the JLex input
file is a series of token definition
rules of the form
RegExpr {Java code}

When a token matching the given
RegExpr is matched, the
corresponding Java code (enclosed in
“{“ and “}”) is executed. JLex figures
out what RegExpr applies; you need
only say what the token looks like
(using RegExpr) and what you want
done when the token is matched (this
is usually to return some token
object, perhaps with some processing
of the token text).

108CS 536 Spring 2005
©

Here are some examples:
"+" {return new Token(sym.Plus);}
(" ")+ {/* skip white space */}
{Digit}+ {return new

IntToken(sym.Intlit,
new Integer(yytext()).intValue());}

109CS 536 Spring 2005
©

Regular Expressions in JLex
To define a token in JLex, the user to
associates a regular expression with
commands coded in Java.
When input characters that match a
regular expression are read, the
corresponding Java code is executed.
As a user of JLex you don’t need to
tell it how to match tokens; you need
only say what you want done when a
particular token is matched.
Tokens like white space are deleted
simply by having their associated
command not return anything.
Scanning continues until a command
with a return in it is executed.
The simplest form of regular
expression is a single string that
matches exactly itself.

110CS 536 Spring 2005
©

For example,
if {return new Token(sym.If);}

If you wish, you can quote the string
representing the reserved word
("if"), but since the string contains
no delimiters or operators, quoting it
is unnecessary.
For a regular expression operator, like
+, quoting is necessary:
"+" {return newToken(sym.Plus);}

111CS 536 Spring 2005
©

Character Classes
Our specification of the reserved word
if, as shown earlier, is incomplete. We
don’t (yet) handle upper or mixed-
case.
To extend our definition, we’ll use a
very useful feature of Lex and JLex—
character classes.
Characters often naturally fall into
classes, with all characters in a class
treated identically in a token
definition. In our definition of
identifiers all letters form a class
since any of them can be used to
form an identifier. Similarly, in a
number, any of the ten digit
characters can be used.

112CS 536 Spring 2005
©

Character classes are delimited by [
and] ; individual characters are listed
without any quotation or separators.
However \ , ^ ,] and - , because of
their special meaning in character
classes, must be escaped. The
character class [xyz] can match a
single x , y, or z .
The character class [\])] can match
a single] or) .
(The] is escaped so that it isn’t
misinterpreted as the end of character
class.)
Ranges of characters are separated by
a - ; [x-z] is the same as [xyz] .
[0-9] is the set of all digits and
[a-zA-Z] is the set of all letters,
upper- and lower-case. \ is the
escape character, used to represent

113CS 536 Spring 2005
©

unprintables and to escape special
symbols.
Following C and Java conventions, \n
is the newline (that is, end of line),
\t is the tab character, \\ is the
backslash symbol itself, and \010 is
the character corresponding to octal
10.
The ^ symbol complements a
character class (it is JLex’s
representation of the Not operation).
[^xy] is the character class that
matches any single character except
x and y. The ^ symbol applies to all
characters that follow it in a
character class definition, so [^0-9]
is the set of all characters that aren’t
digits. [^] can be used to match all
characters.

114CS 536 Spring 2005
©

Here are some examples of character
classes:

Character
Class Set of Characters Denoted
[abc] Three characters: a, b and c
[cba] Three characters: a, b and c
[a-c] Three characters: a, b and c
[aabbcc] Three characters: a, b and c
[^abc] All characters except a, b

and c
[\^\-\]] Three characters: ^ , - and]
[^] All characters
"[abc]" Not a character class. This

is one five character string:
[abc]

115CS 536 Spring 2005
©

Regular Operators in JLex
JLex provides the standard regular
operators, plus some additions.
• Catenation is specified by the

juxtaposition of two expressions; no
explicit operator is used.
Outside of character class brackets,
individual letters and numbers match
themselves; other characters should
be quoted (to avoid misinterpretation
as regular expression operators).

Case is significant.

Regular Expr Characters Matched
a b cd Four characters: abcd
(a)(b)(cd) Four characters: abcd
[ab][cd] Four different strings: ac or

ad or bc or bd
while Five characters: while
" while " Five characters: while
[w][h][i][l][e] Five characters: while

116CS 536 Spring 2005
©

• The alternation operator is | .
Parentheses can be used to control
grouping of subexpressions.
If we wish to match the reserved
word while allowing any mixture
of upper- and lowercase, we can use
(w|W)(h|H)(i|I)(l|L)(e|E)
or
[wW][hH][iI][lL][eE]

Regular Expr Characters Matched
ab|cd Two different strings: ab or cd
(ab)|(cd) Two different strings: ab or cd
[ab]|[cd] Four different strings: a or b or

c or d

117CS 536 Spring 2005
©

• Postfix operators:
* Kleene closure: 0 or more matches
(ab)* matches λ or ab or abab or
ababab ...

+ Positive closure: 1 or more matches
(ab)+ matches ab or abab or
ababab ...

? Optional inclusion:
expr?

matches expr zero times or once.
expr? is equivalent to (expr) | λ
and eliminates the need for an
explicit λ symbol.
[-+]?[0-9]+ defines an optionally
signed integer literal.

118CS 536 Spring 2005
©

• Single match:
The character ". " matches any single
character (other than a newline).

• Start of line:
The character ^ (when used outside a
character class) matches the
beginning of a line.

• End of line:
The character $ matches the end of a
line. Thus,

^A.*e$
matches an entire line that begins
with A and ends with e.

119CS 536 Spring 2005
©

Overlapping Definitions
Regular expressions map overlap
(match the same input sequence).
In the case of overlap, two rules
determine which regular expression is
matched:
• The longest possible match is

performed. JLex automatically buffers
characters while deciding how many
characters can be matched.

• If two expressions match exactly the
same string, the earlier expression (in
the JLex specification) is preferred.
Reserved words, for example, are
often special cases of the pattern
used for identifiers. Their definitions
are therefore placed before the

120CS 536 Spring 2005
©

expression that defines an identifier
token.

Often a “catch all” pattern is placed
at the very end of the regular
expression rules. It is used to catch
characters that don’t match any of
the earlier patterns and hence are
probably erroneous. Recall that ". "
matches any single character (other
than a newline). It is useful in a
catch-all pattern. However, avoid a
pattern like .* which will consume
all characters up to the next newline.
In JLex an unmatched character will
cause a run-time error.

121CS 536 Spring 2005
©

The operators and special symbols
most commonly used in JLex are
summarized below. Note that a
symbol sometimes has one meaning
in a regular expression and an entirely
different meaning in a character class
(i.e., within a pair of brackets). If you
find JLex behaving unexpectedly, it’s
a good idea to check this table to be
sure of how the operators and
symbols you’ve used behave. Ordinary
letters and digits, and symbols not
mentioned (like @) represent
themselves. If you’re not sure if a
character is special or not, you can
always escape it or make it part of a
quoted string.

122CS 536 Spring 2005
©

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

(Matches with) to group
sub-expressions.

Represents
itself.

) Matches with (to group
sub-expressions.

Represents
itself.

[Begins a character class. Represents
itself.

] Represents itself. Ends a charac-
ter class.

{ Matches with } to signal
macro-expansion.

Represents
itself.

} Matches with { to signal
macro-expansion.

Represents
itself.

" Matches with " to delimit
strings
(only \ is special within
strings).

Represents
itself.

\ Escapes individual charac-
ters.
Also used to specify a
character by its octal code.

Escapes individ-
ual characters.
Also used to
specify a char-
acter by its octal
code.

. Matches any one character
except \n.

Represents
itself.

123CS 536 Spring 2005
©

| Alternation (or) operator. Represents
itself.

* Kleene closure operator
(zero or more matches).

Represents
itself.

+ Positive closure operator
(one or more matches).

Represents
itself.

? Optional choice operator
(one or zero matches).

Represents
itself.

/ Context sensitive matching
operator.

Represents
itself.

^ Matches only at beginning
of a line.

Complements
remaining
characters in the
class.

$ Matches only at end of a
line.

Represents
itself.

- Represents itself. Range of char-
acters operator.

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

124CS 536 Spring 2005
©

Potential Problems in Using
JLex

The following differences from
“standard” Lex notation appear in
JLex:
• Escaped characters within quoted

strings are not recognized. Hence
"\n" is not a new line character.
Escaped characters outside of quoted
strings (\n) and escaped characters
within character classes ([\n]) are
OK.

• A blank should not be used within a
character class (i.e., [and]). You
may use \040 (which is the character
code for a blank).

125CS 536 Spring 2005
©

• A doublequote must be escaped
within a character class. Use [\"]
instead of ["] .

• Unprintables are defined to be all
characters before blank as well as the
last ASCII character. These can be
represented as: [\000-\037\177]

