
418CS 536 Spring 2005
©

Heap Management
A very flexible storage allocation
mechanism is heap allocation.
Any number of data objects can be
allocated and freed in a memory pool,
called a heap.
Heap allocation is enormously
popular. Almost all non-trivial Java
and C programs use new or malloc .

419CS 536 Spring 2005
©

Heap Allocation
A request for heap space may be
explicit or implicit.
An explicit request involves a call to a
routine like new or malloc . An
explicit pointer to the newly allocated
space is returned.
Some languages allow the creation of
data objects of unknown size. In Java,
the + operator is overloaded to
represent string catenation.
The expression Str1 + Str2 creates
a new string representing the
catenation of strings Str1 and
Str2 . There is no compile-time
bound on the sizes of Str1 and
Str2 , so heap space must be
implicitly allocated to hold the newly
created string.

420CS 536 Spring 2005
©

Whether allocation is explicit or
implicit, a heap allocator is needed.
This routine takes a size parameter
and examines unused heap space to
find space that satisfies the request.
A heap block is returned. This block
must be big enough to satisfy the
space request, but it may well be
bigger.
Heaps blocks contain a header field
that contains the size of the block as
well as bookkeeping information.
The complexity of heap allocation
depends in large measure on how
deallocation is done.
Initially, the heap is one large block of
unallocated memory. Memory
requests can be satisfied by simply
modifying an “end of heap” pointer,

421CS 536 Spring 2005
©

very much as a stack is pushed by
modifying a stack pointer.
Things get more involved when
previously allocated heap objects are
deallocated and reused.
Deallocated objects are stored for
future reuse on a free space list.
When a request for n bytes of heap
space is received, the heap allocator
must search the free space list for a
block of sufficient size. There are
many search strategies that might be
used:
• Best Fit

The free space list is searched for the
free block that matches most closely
the requested size. This minimizes
wasted heap space, the search may be
quite slow.

422CS 536 Spring 2005
©

• First Fit
The first free heap block of sufficient
size is used. Unused space within the
block is split off and linked as a
smaller free space block. This
approach is fast, but may “clutter”
the beginning of the free space list
with a number of blocks too small to
satisfy most requests.

• Next Fit
This is a variant of first fit in which
succeeding searches of the free space
list begin at the position where the
last search ended. The idea is to
“cycle through” the entire free space
list rather than always revisiting free
blocks at the head of the list.

423CS 536 Spring 2005
©

• Segregated Free Space Lists
There is no reason why we must have
only one free space list. An
alternative is to have several, indexed
by the size of the free blocks they
contain.

424CS 536 Spring 2005
©

Deallocation Mechanisms
Allocating heap space is fairly easy.
But how do we deallocate heap
memory no longer in use?
Sometimes we may never need to
deallocate! If heaps objects are
allocated infrequently or are very
long-lived, deallocation is
unnecessary. We simply fill heap
space with “in use” objects.
Virtual memory & paging may allow
us to allocate a very large heap area.
On a 64-bit machine, if we allocate
heap space at 1 MB/sec, it will take
500,000 years to span the entire
address space! Fragmentation of a
very large heap space commonly
forces us to include some form of
reuse of heap space.

425CS 536 Spring 2005
©

User-controlled Deallocation
Deallocation can be manual or
automatic. Manual deallocation
involves explicit programmer-
initiated calls to routines like
free(p) or delete(p) .
The object is then added to a free-
space list for subsequent reallocation.
It is the programmer’s responsibility
to free unneeded heap space by
executing deallocation commands.
The heap manager merely keeps track
of freed space and makes it available
for later reuse.
The really hard decision—when space
should be freed—is shifted to the
programmer, possibly leading to
catastrophic dangling pointer errors.

426CS 536 Spring 2005
©

Consider the following C program
fragment
q = p = malloc(1000);
free(p);
/* code containing more malloc’s */
q[100] = 1234;

After p is freed, q is a dangling
pointer. q points to heap space that is
no longer considered allocated.
Calls to malloc may reassign the
space pointed to by q. Assignment
through q is illegal, but this error is
almost never detected.
Such an assignment may change data
that is now part of another heap
object, leading to very subtle errors. It
may even change a header field or a
free-space link, causing the heap
allocator itself to fail!

427CS 536 Spring 2005
©

Automatic Garbage Collection
The alternative to manual
deallocation of heap space is garbage
collection.
Compiler-generated code tracks
pointer usage. When a heap object is
no longer pointed to, it is garbage,
and is automatically collected for
subsequent reuse.
Many garbage collection techniques
exist. Here are some of the most
important approaches:

428CS 536 Spring 2005
©

Reference Counting
This is one of the oldest and simplest
garbage collection techniques.
A reference count field is added to
each heap object. It counts how many
references to the heap object exist.
When an object’s reference count
reaches zero, it is garbage and may
collected.
The reference count field is updated
whenever a reference is created,
copied, or destroyed. When a
reference count reaches zero and an
object is collected, all pointers in the
collected object are also be followed
and corresponding reference counts
decremented.

429CS 536 Spring 2005
©

As shown below, reference counting
has difficulty with circular structures.

If pointer P is set to null, the object’s
reference count is reduced to 1. Both
objects have a non-zero count, but
neither is accessible through any
external pointer. The two objects are
garbage, but won’t be recognized as
such.
If circular structuresare common,
then an auxiliary technique, like
mark-sweep collection, is needed to
collect garbage that reference
counting misses.

Link
Data

Reference Count = 1

Global pointer P

Link
Data

Reference Count = 2

430CS 536 Spring 2005
©

Mark-Sweep Collection
Many collectors, including mark &
sweep, do nothing until heap space is
nearly exhausted.
Then it executes a marking phase that
identifies all live heap objects.
Starting with global pointers and
pointers in stack frames, it marks
reachable heap objects. Pointers in
marked heap objects are also
followed, until all live heap objects
are marked.
After the marking phase, any object
not marked is garbage that may be
freed. We then sweep through the
heap, collecting all unmarked objects.
During the sweep phase we also clear
all marks from heap objects found to
be still in use.

431CS 536 Spring 2005
©

Mark-sweep garbage collection is
illustrated below.

Objects 1 and 3 are marked because
they are pointed to by global pointers.
Object 5 is marked because it is
pointed to by object 3, which is
marked. Shaded objects are not
marked and will be added to the free-
space list.
In any mark-sweep collector, it is vital
that we mark all accessible heap
objects. If we miss a pointer, we may
fail to mark a live heap object and
later incorrectly free it. Finding all

Global pointer Global pointer

Object 1 Object 3 Object 5

Internal pointer

432CS 536 Spring 2005
©

pointers is a bit tricky in languages
like Java, C and C++, that have
pointers mixed with other types
within data structures, implicit
pointers to temporaries, and so forth.
Considerable information about data
structures and frames must be
available at run-time for this purpose.
In cases where we can’t be sure if a
value is a pointer or not, we may need
to do conservative garbage collection.
In mark-sweep garbage collection all
heap objects must be swept. This is
costly if most objects are dead. We’d
prefer to examine only live objects.

433CS 536 Spring 2005
©

Compaction
After the sweep phase, live heap
objects are distributed throughout
the heap space. This can lead to poor
locality. If live objects span many
memory pages, paging overhead may
be increased. Cache locality may be
degraded too.
We can add a compaction phase to
mark-sweep garbage collection.
After live objects are identified, they
are placed together at one end of the
heap. This involves another tracing
phase in which global, local and
internal heap pointers are found and
adjusted to reflect the object’s new
location.
Pointers are adjusted by the total size
of all garbage objects between the

434CS 536 Spring 2005
©

start of the heap and the current
object. This is illustrated below:

Compaction merges together freed
objects into one large block of free
heap space. Fragments are no longer
a problem.
Moreover, heap allocation is greatly
simplified. Using an “end of heap”
pointer, whenever a heap request is
received, the end of heap pointer is
adjusted, making heap allocation no
more complex than stack allocation.

Global pointer Adjusted Global pointer

Object 1 Object 3 Object 5

Adjusted internal pointer

435CS 536 Spring 2005
©

Because pointers are adjusted,
compaction may not be suitable for
languages like C and C++, in which it
is difficult to unambiguously identify
pointers.

436CS 536 Spring 2005
©

Copying Collectors
Compaction provides many valuable
benefits. Heap allocation is simple
end efficient. There is no
fragmentation problem, and because
live objects are adjacent, paging and
cache behavior is improved.
An entire family of garbage collection
techniques, called copying collectors
are designed to integrate copying
with recognition of live heap objects.
Copying collectors are very popular
and are widely used.
Consider a simple copying collector
that uses semispaces. We start with
the heap divided into two halves—the
from and to spaces.

437CS 536 Spring 2005
©

Initially, we allocate heap requests
from the from space, using a simple
“end of heap” pointer. When the from
space is exhausted, we stop and do
garbage collection.
Actually, though we don’t collect
garbage. We collect live heap
objects—garbage is never touched.
We trace through global and local
pointers, finding live objects. As each
object is found, it is moved from its
current position in the from space to
the next available position in the to
space.
The pointer is updated to reflect the
object’s new location. A “forwarding
pointer” is left in the object’s old
location in case there are multiple
pointers to the same object.

438CS 536 Spring 2005
©

This is illustrated below:

The from space is completely filled.
We trace global and local pointers,
moving live objects to the to space
and updating pointers. This is
illustrated in Figure 0.1. (Dashed
arrows are forwarding pointers). We
have yet to handle pointers internal
to copied heap objects. All copied
heap objects are traversed. Objects
referenced are copied and internal
pointers are updated. Finally, the to

Global pointer Global pointer

Object 1 Object 3 Object 5

Internal pointer

From Space

To Space

439CS 536 Spring 2005
©

and from spaces are interchanged,
and heap allocation resumes just
beyond the last copied object. This is
illustrated in Figure 0.2.

The biggest advantage of copying
collectors is their speed. Only live
objects are copied; deallocation of

Figure 0.1 Copying Garbage Collection (b)

Figure 0.2 Copying Garbage Collection (c)

Global pointer Global pointer

Object 5

Internal pointer

From Space

To SpaceObject 1 Object 3

Global pointer Global pointer

Object 5

Internal pointer

From Space

To Space

Object 1 Object 3

End of Heap pointer

440CS 536 Spring 2005
©

dead objects is essentially free. In
fact, garbage collection can be made,
on average, as fast as you wish—
simply make the heap bigger. As the
heap gets bigger, the time between
collections increases, reducing the
number of times a live object must be
copied. In the limit, objects are never
copied, so garbage collection becomes
free!
Of course, we can’t increase the size
of heap memory to infinity. In fact,
we don’t want to make the heap so
large that paging is required, since
swapping pages to disk is dreadfully
slow. If we can make the heap large
enough that the lifetime of most
heap objects is less than the time
between collections, then
deallocation of short-lived objects

441CS 536 Spring 2005
©

will appear to be free, though longer-
lived objects will still exact a cost.
Aren’t copying collectors terribly
wasteful of space? After all, at most
only half of the heap space is actually
used. The reason for this apparent
inefficiency is that any garbage
collector that does compaction must
have an area to copy live objects to.
Since in the worst case all heap
objects could be live, the target area
must be as large as the heap itself. To
avoid copying objects more than
once, copying collectors reserve a to
space as big as the from space. This is
essentially a space-time trade-off,
making such collectors very fast at
the expense of possibly wasted space.
If we have reason to believe that the
time between garbage collections will

442CS 536 Spring 2005
©

be greater than the average lifetime
of most heaps objects, we can
improve our use of heap space.
Assume that 50% or more of the
heap will be garbage when the
collector is called. We can then divide
the heap into 3 segments, which we’ll
call A, B and C. Initially, A and B
will be used as the from space,
utilizing 2/3 of the heap. When we
copy live objects, we’ll copy them into
segment C, which will be big enough
if half or more of the heap objects are
garbage. Then we treat C and A as
the from space, using B as the to
space for the next collection. If we
are unlucky and more than 1/2 the
heap contains live objects, we can still
get by. Excess objects are copied onto
an auxiliary data space (perhaps the

443CS 536 Spring 2005
©

stack), then copied into A after all
live objects in A have been moved.
This slows collection down, but only
rarely (if our estimate of 50%
garbage per collection is sound). Of
course, this idea generalizes to more
than 3 segments. Thus if 2/3 of the
heap were garbage (on average), we
could use 3 of 4 segments as from
space and the last segment as to
space.
Generational Techniques
The great strength of copying
collectors is that they do no work for
objects that are born and die between
collections. However, not all heaps
objects are so short-lived. In fact,
some heap objects are very long-
lived. For example, many programs
create a dynamic data structure at

444CS 536 Spring 2005
©

their start, and utilize that structure
throughout the program. Copying
collectors handle long-lived objects
poorly. They are repeatedly traced and
moved between semispaces without
any real benefit.
Generational garbage collection
techniques [Unger 1984] were
developed to better handle objects
with varying lifetimes. The heap is
divided into two or more generations,
each with its own to and from space.
New objects are allocated in the
youngest generation, which is
collected most frequently. If an object
survives across one or more
collections of the youngest
generation, it is “promoted” to the
next older generation, which is
collected less often. Objects that

445CS 536 Spring 2005
©

survive one or more collections of this
generation are then moved to the
next older generation. This continues
until very long-lived objects reach the
oldest generation, which is collected
very infrequently (perhaps even
never).
The advantage of this approach is
that long-lived objects are “filtered
out,” greatly reducing the cost of
repeatedly processing them. Of
course, some long-lived objects will
die and these will be caught when
their generation is eventually
collected.
An unfortunate complication of
generational techniques is that
although we collect older generations
infrequently, we must still trace their
pointers in case they reference an

446CS 536 Spring 2005
©

object in a newer generation. If we
don’t do this, we may mistake a live
object for a dead one. When an object
is promoted to an older generation,
we can check to see if it contains a
pointer into a younger generation. If
it does, we record its address so that
we can trace and update its pointer.
We must also detect when an existing
pointer inside an object is changed.
Sometimes we can do this by
checking “dirty bits” on heap pages to
see which have been updated. We
then trace all objects on a page that
is dirty. Otherwise, whenever we
assign to a pointer that already has a
value, we record the address of the
pointer that is changed. This
information then allows us to only
trace those objects in older

447CS 536 Spring 2005
©

generations that might point to
younger objects.
Experience shows that a carefully
designed generational garbage
collectors can be very effective. They
focus on objects most likely to
become garbage, and spend little
overhead on long-lived objects.
Generational garbage collectors are
widely used in practice.
Conservative Garbage Collection
The garbage collection techniques
we’ve studied all require that we
identify pointers to heap objects
accurately. In strongly typed
languages like Java or ML, this can be
done. We can table the addresses of
all global pointers. We can include a
code value in a frame (or use the

448CS 536 Spring 2005
©

return address stored in a frame) to
determine the routine a frame
corresponds to. This allows us to then
determine what offsets in the frame
contain pointers. When heap objects
are allocated, we can include a type
code in the object’s header, again
allowing us to identify pointers
internal to the object.
Languages like C and C++ are weakly
typed, and this makes identification
of pointers much harder. Pointers may
be type-cast into integers and then
back into pointers. Pointer arithmetic
allows pointers into the middle of an
object. Pointers in frames and heap
objects need not be initialized, and
may contain random values. Pointers
may overlay integers in unions,

449CS 536 Spring 2005
©

making the current type a dynamic
property.
As a result of these complications, C
and C++ have the reputation of being
incompatible with garbage collection.
Surprisingly, this belief is false. Using
conservative garbage collection, C and
C++ programs can be garbage
collected.
The basic idea is simple—if we can’t
be sure whether a value is a pointer
or not, we’ll be conservative and
assume it is a pointer. If what we
think is a pointer isn’t, we may retain
an object that’s really dead, but we’ll
find all valid pointers, and never
incorrectly collect a live object. We
may mistake an integer (or a floating
value, or even a string) as an pointer,
so compaction in any form can’t be

450CS 536 Spring 2005
©

done. However, mark-sweep
collection will work.
Garbage collectors that work with
ordinary C programs have been
developed [BW 1988]. User programs
need not be modified. They simply are
linked to different library routines, so
that malloc and free properly
support the garbage collector. When
new heap space is required, dead heap
objects may be automatically
collected, rather than relying entirely
on explicit free commands (though
free s are allowed; they sometimes
simplify or speed heap reuse).
With garbage collection available, C
programmers need not worry about
explicit heap management. This
reduces programming effort and
eliminates errors in which objects are

451CS 536 Spring 2005
©

prematurely freed, or perhaps never
freed. In fact, experiments have
shown [Zorn 93] that conservative
garbage collection is very competitive
in performance with application-
specific manual heap management.

