
CS 536

Final Exam

Wednesday, December 18, 2002

12:25 PM— 2:25 PM

B102 Van Vleck

Instructions
Answer any five questions. (If you answer more, only the first five will count.) Each

question is worth 20 points. Please try to make your answers neat and coherent.

Remember, if we can’t read it, it’s wrong. Partial credit will be given, so try to put

something down for each question (a blank answer always gets 0 points!).

1. Assume that we add a conditional expression of the form

(Expr 1 ? Expr 2 : Expr 3)
to CSX.

Expr 1 is an expression that returns a bool . If Expr 1 is true, expression Expr 2 is eval-

uated, and its value is the value of the conditional expression. If Expr 1 is false, expres-

sion Expr 3 is evaluated, and its value is the value of the conditional expression.

Outline the changes that would be needed in a CSX type-checker and code generator

to handle conditional expressions. Illustrate your answer using the following example:

a = (i != 0 ? j/i : 0);

2. (a) In CSX we type check a call to method M by first type checking M’s declaration.

Then the actual parameters in the call to M are type checked. Finally, the number, type

and kind of parameters found in the call are compared with the number, type and

kind of parameters specified in M’s declaration.

Consider the following alternative. In a declaration of a method P, no types are given to

P’s parameters; they are simply given names. For example,

int P(a,b,c) { ... }
When a call to P is found, the parameters in the call are type checked (as usual) and

then these types are used as definitions of the types of P’s parameters.

What changes are needed in your type checking of method declarations and calls to

implement this change?

(b) A potential difficulty in the approach suggested in part (a) is that different calls

to P may differ in the types used for a particular parameter. How would you handle

a non-unique type for a parameter in different calls to P?

3. Assume we add a new operator to CSX, the delay operator. The expression

delay expr
returns a suspended execution of expr (essentially a function of zero arguments whose

body is return expr). The operation

force suspension
forces the given suspension (created by a delay operation) to be evaluated, returning

the value of the suspended expression.

For example,

delay delete_file(f)
creates a suspended call to delete_file with parameter f . The delete_file oper-

ation is not done yet, it is just “set up.” At some later time the suspension created by

the delay may be activated by using the force operation. Then the delete_file
operation is performed.

Explain how you would implement delay and force in CSX. How can you be sure

that all the variables visible when the delay was executed are still accessible when the

force is executed?

4. Let G be any context-free grammar that contains no λ productions. Let X and Y be any

two terminal symbols (tokens). Adjacent(X,Y) is a predicate (boolean-valued function)

that determines whether X and Y can ever be adjacent in any program defined by G.

Explain how to implement Adjacent(X,Y). (Java code is not required; just explain the

steps needed to test for adjacency.)

5. (a) Consider the following context free grammar:

S → Label id () :
S → Label id = id ;
Label → id :
Label → λ

Is this grammar LL(1)? Why? Is this grammar LALR(1)? Why?

(b) Consider the following context free grammar:

S → Label id () :
S → Label id = id ;
Label → intlit :
Label → λ

Is this grammar LL(1)? Why? Is this grammar LALR(1)? Why?

(c) Consider the following context free grammar:

S → Label id () :
S → Label id (Arg) ;
Label → intlit :
Label → λ
Arg → id
Arg → λ

Is this grammar LL(1)? Why? Is this grammar LALR(1)? Why?
-2-

6. (a) Code for an if statement is generated on the assumption that the value of the con-

trol expression will not be known until run-time. In some cases the value of the control

expression is known at compile-time. The simplest such case if when the control

expression is just the boolean literal true or false .

What changes would you make in your CSX code generator for if statements to handle

the special case of a control expression that is either the literal true or the literal

false ?

(b) The special case handled in part (a) is uncommon. More common is the case in

which the control expression is an identifier declared to be a boolean constant with a

literal initializer. For example,

const debug = true;
...
if (debug) ...

What changes are needed to your solution to part (a) to include the case of identifiers

declared to be boolean constants?

(c) It may occur that the control expression of an if statement contains boolean oper-

ators (&&, || , !) whose operands are all boolean literals or boolean constants with

literal initializers. For example,

const debug1 = true;
const debug2 = false;
...
if (debug1 || debug2) ...

What changes are needed to your solution to part (b) to include the case of boolean

operators whose operands are all boolean literals or boolean constants?

7. Assume we have a Java class

class K {
int a;
int sum(){

int b=1;
return a+b;

} }
and the call

z = (new K()).sum();

Explain the run-time steps needed to call and execute sum() (parameter passing,

frame manipulation, return address manipulation, etc.)
-3-

	CS 536
	Final Exam
	1. Assume that we add a conditional expression of the form ��(Expr1 ? Expr2 : Expr3) to CSX. Expr...
	2. (a) �In CSX we type check a call to method M by first type checking M’s declaration. Then the ...
	3. Assume we add a new operator to CSX, the delay operator. The expression ���delay expr returns ...
	4. Let G be any context-free grammar that contains no l productions. Let X and Y be any two termi...
	5. (a) �Consider the following context free grammar:
	6. (a) �Code for an if statement is generated on the assumption that the value of the control exp...
	7. Assume we have a Java class

