CS 536 — Spring 2006

Programming Assignment 3
CSX Parser

Due: Wednesday, March 22, 2006
Not accepted after Wednesday, March 29, 2006

You are to write a Java CUP parser specification to implement a CSX parser. A grammar that
defines CSX’s syntax appears below. You should examine the grammar carefully to learn the
structure of CSX constructs. In most cases, structures are very similar to those of Java and C++.
Note that at this stage you need not understand exactly what each codsiegdiut rather just
what each construtboks like

The CSX grammar listed below encodes the fact that the uhaapd type cast operators
have the highest precedence. Fhand/ operators have the next highest precedence +Tdued
— operators have the third highest precedence. The relational operatois(, <, <=, >= and
>) have the fourth highest precedence. The boolean oper&&rand||) have the lowest pre-
cedence. ThusA+B*C==3 || DI=F is equivalent to the following fully-parenthesized expres-
sion: ((((*{A)+(B*C))==3) || (D'=F)) . All binary operators are left-associative, except
the relational operators which do not associate at all hesB==Cis illegal). The unary oper-
ators are (of course) right-associative. Be sure that your parser for CSX properly reflects these
precedence and associativity rules.

program — class id { memberdecls }
memberdecls — fielddecl memberdecls
| methoddecls
fielddecls — fielddecl fielddecls
| A
methoddecls — methoddecl methoddecls
| A
optionalSemi -
| A
methoddecl — vodid () { fielddecls stmts } optionalSemi
| void id (argdecls){ fielddecls stmts } optionalSemi
| type id () { fielddecls stmts } optionalSemi
| type id (argdecls) { fielddecls stmts } optionalSemi
argdecls — argdecl , argdecls
| argdecl
argdecl — type id
I type id []
fielddecl — type id ;
| type id = expr
| type id [intlit]
| const id = expr
stmts — stmt stmts
| stmt

stmt - f (expr) stmt

type

args

readlist

writelist

expr

term

factor

pri

unary

unit

if (expr) stmt
while (expr) stmt

else stmt

id : while (expr) stmt

name = expr ;
read (readlist) ;
print (writelist) ;
id ()

id (args) ;
return

return expr ;
break id ;
continue id ;

{ fielddecls stmts
int

char

bool

expr , args

expr

name , readlist
name

expr , writelist
expr

expr || term
expr && term
term

factor < factor
factor > factor
factor <= factor
factor >= factor

factor == factor
factor != factor
factor

factor + pri
factor - pri

pri

pri * unary
pri / unary
unary

! unary

(type) unary
unit

name

id ()
id (args)
intlit

charlit

strlit

true

false

(expr)

} optionalSemi

20f12

name - id
| id [expr]
CSX Grammar
Using JavaCUP to Build a Parser

You will use JavaCUR a Java-based parser generator, to build your CSX parser. You'll have
to rewrite the CSX grammar into the format required by JavaCUP. This format is defined in
“CUP User’s Manual,” available in the “Useful Programming Tools” section of the class homep-
age. A sample CUP specification correspondingCteX-lite (a small subset of CSX) may be
found in~cs536-1/public/proj3/startup/lite.cup

Once you've rewritten the CSX grammar we've prowded and entered it into a file (say
csx.cup), you can test whether the grammar can be parsed by a CUP-generated parser. Run

java java_cup.Main < csx.cup

Java CUP will generate a message
*** Shift/Reduce conflict found in state #XX

whereXXis a number that depends on the exact structure of the grammar you enter. This mes-
sage indicates that the grammar we’ve provided is almost, but not quite, in a form acceptable to
CUP. This is a common occurrence. Most context-free grammars used to define programming
languages can be handled by CUP, sometimes after minor modification.
The difficulty in this grammar is the well-known “dangling else” problem. That is, given the
statement
if (a) if (b) a=true; else b=true;

does theelse statement belong to the outer or innker? The grammar we've provided allows
either association. Theorrectassociation is to match thedse part with the nearest unmatched

if . You must modify the grammar we've provided to enforce this “nearest match” rule. See
85.6 of the compiler notes for a more thorough discussion of the problem (CUP generates
LALR(1) parsers, so a correct gramntan be written.)

You may rewrite the CSX grammar in any way you wish, adding or changing productions
and nonterminals. Yoaan't change the CSX language itself (i.e., the sequences of tokens con-
sidered valid).

Once your grammar is in the right format and generates no error messages, Java CUP will
create a fileparser.java that contains the parser it has generated. It will also create a file
sym.java that contains the token codes the parser is expectingsidagava with JLex in
generating your scanner to guarantee that both the scanner and parser use the same token codes.

The generated parser, nampdrse , is a member of clasparser . It will call Scan-
ner.next_token () to get tokens. ClasScanner (provided by us) creates™ylex object
(a JLex scanner) and callg/lex () as necessary to provide tokens. Be sure to 8aHln-
ner.init(in) prior to parsing withn , theFilelnputStream you wish to scan from.

If there is a syntax error during parsingarse () will throw a SyntaxErrorException ;
be sure to catch it. It will also callyntax_error(token) to print an error message. We
provide a simple implementation efntax_error in lite.cup (the Java CUP parser spec-
ification for CSX-lite). You may improve it if you wish (perhaps to print the offending token).
You should test your parser on a variety of simple inputs, both legal and illegal, to verify that
your parser is operating correctly.

3o0f12

Generating Abstract Syntax Trees

So far your parser reads input tokens and determines whether they form a syntactically cor-
rect program. You now must extend your parser so that it builds an abstract syntax tree (AST).
The AST will be used by the type checker and code generator to complete compilation of a CSX
program.

Abstract syntax tree nodes are defined as Java classes, with each particular kind of AST
node corresponding to a particular class. Thus the AST node for an assignment statement corre-
sponds to the clasasgNode . The classes comprising AST nodes are not independent. All of
them are direct or indirect subclasses of the following:

abstract class ASTNode {
int linenum;
int colnum;

static void genindent(int indent){ ... }

ASTNode(){linenum=-1;colnum=-1;}
ASTNode(int l,int c){linenum=I;colnum=c;}
boolean isNull(){return false;}; // Is this node null?
void Unparse(int indent){};
3
ASTNode is the base class from which all other classes for AST nodes are créegdd.
Node is what is termed ambstract superclassThis means objects of this class are never cre-
ated. Rather the definition serves to define the fields and methods shared by all subclasses.

ASTNode contains two instance variabldsienum andcolnum . They represent the line
and column numbers of the tokens from which the AST node was built. ThséMode , the
AST node for assignment statemenisenum andcolnum would correspond to the position
of the assignment’s target variable, since that's where the assignment statement begins.

ASTNode also has two constructors that ieenum andcolnum . These constructors are
called by constructors of subclasses to set these two fields (to either explicit or default values).

The methodsNull is used to determine if a particular AST node is “null”; that is, if it cor-
responds ta. Only special “null nodes” will define theisNull function to return true; other
AST nodes will inherit the definition IASTNode.

The methodUnparse is used to “unparse” an AST node—that is, to print it out in a clear
human-readable form. Unparsing will be discussed below. We expect that each subclass will pro-
vide its own definition ofUnparse ; the default—to print nothing—is usually inappropriate.
Thus theasgNode’s Unparse function will define how assignment statements are to be
printed. Clearly each kind of AST node should have its own unparsing rules. Meyahén-
dent is a utility routine used bynparse .

An example of an AST node that we will build as a CSX program is parsed is:

class classNode extends ASTNode {
classNode(identNode id, memberDeclsNode m,
int line,int col){ ... }
void Unparse(int indent) { ... }
private identNode className;
private memberDeclsNode members;

4 of 12

classNode corresponds to the start symbol of all CSX prograpregram. classNode
is a subclass cAASTNode, so it inherits all ofASTNode's fields and members. It contains a con-
structor, as all AST nodes will. This constructor sets the private members of the class. It also
calls ASTNode's constructor to selinenum andcolnum . Unparse provides a definition of
unparsing appropriate to the program structure the class representsclissidode corre-
sponds to a noR-construct, it is content to inherit and US8TNode's definition ofisNull

classNode also contains two private fields. These correspond to the two subtrees a
classNode will contain: the name of the class (an identifier), and the declarations (fields and
methods) within the class. The type declarations telpregiselythe kind of subtrees that are
permitted. Thus if we tried to assign a subtree corresponding to an integer literialsto
Name we'd get a Java type error, because the AST node corresponding to integer literals
(intLitNode) is different that the typelassName expects (which igdentNode).

This explains why we've created so many different classes for AST nodes. Each different
kind of node has its own class, and it is wrong to assign a class corresponding to one kind of
AST node to a field expecting a different kind of AST node.

We list below (in Table 1) all the AST classes that we use. For each class, we list the field
names in that class and the type of each field. This type will usually be a reference to a particular
AST class object. In some cases a field may reference a special kind of AST node, a “null node,”
that corresponds te. That is, if a subtree is empty, we'll use a null node to represent that fact.
For example, in a class method declarations are optional. If a class chooses to have no methods,
the methods field in memberDeclsNode will point to a nullFieldDeclsNode . As you
might expect, null nodes have no internal fields. They simply serve as placeholders so that all
subtrees that are expected are always present. Without null nodes, you'd have to routinely check
if an AST reference is null before you use it, which is tedious and error-prone.

Some AST nodes are always leaves (edgntNode); others have one or more subtrees.
Thus theasgNode has two subtrees, one for the name being assignethtget) and the
other for the expression being assignsalifce).

The AST nodeddentNode , intLitNode , charLitNode and strLitNode do not
have subtrees, but do contain the string value, integer value, character value, or string value
returned by the scanner (in token objects). Leaf nodestfikeNode andboolTypeNode
have no fields (other thalinenum andcolnum inherited from their superclass). This simply
means that for such nodes we need no information beyond their class.

Null nodes are used to represent null subtrees. Java’s strict type rules make it necessary to
create several different classes for null nodes. However, it is easy to reference a null node of the
correct type. If you want a null node that can be assigned to a field of A&s§ then
XXX.NULL is the null node you want. For example, if you want to assign a null node to a field
expecting sstmtNode , thenstmtNode.NULL is the value you should use.

It is better to reference a null node than to storaulh value. If all object references in AST
nodes point teomethinghen we never have to check a reference before we use it.

BesidesastNode , we will use a number of other abstract superclasses to build our AST.
One of these istmtNode . We will never actually create a node of typentNode . But then
why do we bother to define it?

Sometimes we want to be able to reference one of a number of kinds of AST nodes, but not
just any node. Thus in stmtNode we want to reference any kind of AST node corresponding
to a statement, but not AST nodes corresponding to non-statements. We solve this problem by
declaring a reference to have typentNode . We make all classes corresponding to statements
(like asgNode or readNode) subclassesf stmtNode . The rules of Java say that a reference
to a classS may be assigned an object of asybclasof S. This is because a subclass®ton-
tains everythingS does (and perhaps more). ThusasgNode may be assigned to a variable

50f12

expecting astmtNode without error. However an AST node that is not a subclasstiwit-
Node (e.g.,boolTypeNode) may not be legally assigned to a variable expectingrat-
Node.

Although the set of class definitions ast.java looks complex, the main benefit of using
them is that it becomes very difficult to insert AST nodes in the wrong place. If you try, you'll
get an error message complaining that the type of node you are trying to assign to an AST node’s

field is illegal. In Table 2, below, we list all the AST nodes that appeawssitjava and their
superclass.
Java class Fields Used Type of Fields Null node
allowed?

classNode className identNode No
members memberDeclsNode Yes

memberDeclsNode fields fieldDeclsNode Yes
methods methodDeclsNode Yes

fieldDeclsNode thisField decINode No
moreFields fieldDeclsNode Yes

varDecINode arName identNode No
varType typeNode No
initValue exprNode Yes

constDecINode gonstName identNode No
constValue exprNode No

arrayDecINode arrayName identNode No
elementType typeNode No
arraySize intLitNode No

intTypeNode

boolTypeNode

charTypeNode

voidTypeNode

methodDeclsNode thisDecl methodDecINode No
moreDecls methodDeclsNode Yes

methodDecINode name identNode No
args argDeclsNode Yes
returnType typeNode No
decls fieldDeclsNode Yes
stmts stmtsNode No

argDeclsNode thisDecl argDecINode No
moreDecls argDeclsNode Yes

arrayArgDecINode argName identNode No
elementType typeNode No

Table 1. Classes Used to Define AST Nodes in CSX

6 of 12

Java class Fields Used Type of Fields Null node
allowed?
valArgDecINode argName identNode No
argType typeNode No
stmtsNode thisStmt stmtNode No
moreStmts stmtsNode Yes
asgNode target nameNode No
source exprNode No
ifThenNode condition exprNode No
thenPart stmtNode No
elsePart stmtNode Yes
whileNode abel exprNode Yes
condition exprNode No
loopBody stmtNode No
readNode targetVar nameNode No
moreReads readNode Yes
printNode qutputValue exprNode No
morePrints printNode Yes
callNode methodName identNode No
args argsNode Yes
returnNode returnVal exprNode Yes
breakNode label identNode No
continueNode label identNode No
blockNode decls fieldDeclsNode Yes
stmts stmtsNode No
argsNode argVal exprNode No
moreArgs argsNode Yes
strLitNode strval String No
binaryOpNode eftOperand exprNode No
rightOperand exprNode No
operatorCode int No
unaryOpNode operand exprNode No
operatorCode int No
castNode resultType typeNode No
operand exprNode No
fctCallNode methodName identNode No
methodArgs argsNode Yes
identNode idname String No
nameNode varName identNode No
subscriptVal exprNode Yes

Table 1. Classes Used to Define AST Nodes in CSX

7 of12

Java class Fields Used Type of Fields Null node
allowed?

intLitNode intval int No

charLitNode charval char No

trueNode none

falseNode none

null nodes none

(many kinds)

Table 1. Classes Used to Define AST Nodes in CSX

AST Node Superclass AST Node Superclass
argDecINode ASTNode argDeclsNode ASTNode
argsNode ASTNode arrayArgDecINode argDecINode
arrayDecINode decINode aggNode stmtNode
binaryOpNode exprNode BlockNode stmtNode
boolTypeNode typeNode HreakNode stmtNode
callNode stmtNode cdstNode exprNode
charLitNode exprNode charTypeNode typeNode
classNode ASTNode constDecINode decINode
continueNode gtmtNode decINode ASTNode
exprNode ASTNode falseNode exprNode
fctCallNode exprNode fieldDeclsNode ASTNode
identNode exprNode ifffhenNode stmtNode
intLitNode exprNode intlfypeNode typeNode
memberDeclsNode ASTNode methodDecINode ASTNode
methodDeclsNode ASTNode nameNode exprNode
nullNode ASTNode printNode stmtNode
readNode stmtNode pturnNode stmtNode
stmtNode ASTNode stmtsNode ASTNode
strLitNode exprNode trugeNode exprNode
typeNode ASTNode unaryOpNode exprNode
valArgDecINode argDecINode varpecINode declNode
whileNode stmtNode vpidTypeNode typeNode

Table 2 Classes Used in AST Nodes and Their Superclasses

Getting Started

We've placed skeleton files for the project #rs536-1/public/proj3/startup

Look at file ast.java

. This file will create a large number of “.class” files (one for each
of AST node, as well as others). To keep your project directory manageabl®]akefile
places all “.class” files in a subdirectorglasses

variable to include this directory.

If you haven'’t already done saipdate your .cshrc.local

. Be sure yourCLASSPATHenvironment

file (which can be found in

8 of 12

your home directory) to contain:

setenv CLASSPATH ".../classes:/s/javaljre/lib/rt.jar:/p/course/
cs536-reps/public/JAVA"

setenv VPATH "./classes"

(These are two lines, not three. Ignore the line break after the /. This lines are exactly the
same as we used in projects 1 and 2)

Building ASTs in Java CUP

We'll need to build ASTs for CSX programs we have parsed. One of the reasons we’re using
Java CUP to build our parser is that it's easy to build ASTs using CUP. CUP allows us to embed
actions in the form of Java code, in the productions CUP parses. When a production containing
an action is matched byarse (), the associated action is automatically executed. For example
in the following rule (drawn fronlite.cup)

stmt ::=ident:id ASG exp:e SEMI
{: RESULT =
new asgNode(id, e, id.linenum, id.colnum);

'}

the productionstmt - ident = expr ; is specified. Moreover, whenever this production is
matched, the constructasgNode is called (sinceasgNode corresponds to assignment state-
ments). The constructor faisgNode wants four things: ASTs nodes corresponding to the
source and target of the assignment, and a line and column number to associate with the assign-
ment. The special suffixedd and:.e represent references (automatically maintained by CUP)

to the ASTs for thadent and expr that have already been parsed. These ASTs have already
been built by the time this production is matched. We define the line and column of the assign-
ment to be the line and column of the leftmost symbol in the assignment, which idehe

Since,id references the AST node built fadent, id.linenum represents the line number
already stored for the identifier.

After astNode builds a new AST node for the assignment and links in its subtrees, the
result is assigned tRESULT RESULTIis a special symbol, maintained by CUP, that represents
the lefthand side non-terminadt(nt). As productions are matched, AST subtrees are built and
merged into progressively larger trees. Finally, when the first production (corresponding to an
entire program) is matched, the root of the complete AST can be returned by the parser. The
bookkeeping required to maintain AST pointers as productions are matched is automatically
done by CUP, using tRESULT and:name notation.

Information placed in tokens returned by the scanner can also be easily accessed. A suffix
placed after a terminal symbol allows the token object corresponding to the terminal symbol to
be accessed. Thus the rule

exp ::= exp:l PLUS:op ident:r
{: RESULT = new hinaryOpNode(l, sym.PLUS, r,
op.linenum, op.colnum); :}

uses thdinenum andcolnum values of thePLUS token (extracted asp.linenum and
op.colnum) in constructing &inaryOpNode that represents the AST for the addition oper-
ation.

9 of 12

The objects referenced for each terminal and non-terminal symbol in the grammar are
defined usingerminal andnon terminal directives. The lines

terminal CSXldentifierToken IDENTIFIER;
terminal CSXToken SEMI, LPAREN, RPAREN, ASG, LBRACE, RBRACE;

tell Java CUP that the tokens fot ,'(" ,")" , etc. will all be instances of clagdSXToken,

while theIDENTIFIER token will be an instance of clags$XldentifierToken . The lines
non terminal csxLiteNode prog;
non terminal stmtsNode stmts;

say that the nontermingbrog will reference classcsxLiteNode , while the nonterminal
stmts will referencestmtsNode .

The member functioparse (), which is the CUP-generated parser, returns an object of type
Symbol . For successful parses, this will be the start sympobgram) of the derivation. The
value field of the returne@®ymbol will contain the AST corresponding psogram.

Unparsing

For grading, testing and debugging purposes, it is hecessary to display the abstract syntax
tree your parser creates. A convenient way to do this is to create a member function
Unparse(int indent) that prints out the node’s structure in conventional (text-oriented)
form. (indent is the number of tabs to indent prior to printing the node’s structutmparse
“pretty prints” the construct, adding new lines and tabs as appropriate to create a pleasing and
easily-readable listing. For constructs that are forced to begin on a new line (like statements and
declarations) you should print a line number at the beginning of the construct’s unparsing using
thelinenum value stored in the AST node. Note that the line numbers primtay notbe con-
secutive since they correspond to the original input text. Moreover, some parts of a construct that
appear on a new line (like the '} at the end of the class definition) will get a line number that
appears “out of order” since the line number stored with an AST node corresponds to where the
constructbegan

Each abstract syntax tree node is associated with a production that can be viewed as a pattern
that specifies how a node is to be displayed. For example givasgNode , which will always
be printed on a new line, we would first print out the line number (using the ndideisum
value) and indent usinginparse ’'s indent parameter. We then cathrget.Unparse(0)
(to print the target variable, without indenting), priat,'call source.Unparse(0) (to print
the source expression, without indenting), and finally print '

ForintLitNode s we printintval . ForstrLitNode s we printstrval (which is the
full string representation, with quotes and escapes).charLitNode s printcharval as a
quoted character in fully escaped form. HdentNode s the unparser should usgname
which is the text of the identifier.

Abstract syntax trees for expressions contain no parentheses since the tree structure encodes
how operands are grouped. When expressions are unparsed, explicit parentheses should be
added to guarantee that expressions are properly interpreted. HeB&E would be unparsed
to (A+(B*C)) . (Fancier unparsers that only print necessary parentheses are a bit harder to
write. An unparser that prints parentheses only when really necessary will get extra credit.)

10 of 12

What You Must Do

This project step is not nearly as hard as it looks, because you have CUP to help you build
your parser. Still, it helps a lot to see an example of all the pieces you'll need to complete. We've
created a small subset of CSX, cal@8X-lite, that’s defined by the following productions:

program — { stmts }
stmts — stmt stmts
| A
stmt — id = expr
| if (expr) stmt
expr — expr + id
| expr - id
| id

CSX-lite Grammar
This simple subset contains no declarations; only an assignment and if statement are pro-
vided and expressions involve oty — and identifiers. Complete CUP specifications, parsers,
AST builders and unparsers for CSX-lite may be found~ige536-1/public/proj3/
startup . Just type

make test

to build a complete parser for CSX-lite and then test it using a simple source program.

You should look at what we've provided to make sure you understand how each step of the
project works for CSX-lite. Basically, ASTs are built using calls to constructors as illustrated in
lite.cup . Once an individual production is matched by the parser, a constructor for the corre-
sponding AST node is called. You should substitute your scanner from project 2, by replacing
lite.jlex with yourcsx.jlex file.

Unparsing functions, one for each AST node that is built, are member functions in
astjava . Each such routine is fairly simple—the information in the node is printed in nicely
formatted form, with recursive calls tdnparse to unparse subcomponents.

Once you're clear on what's going on, add a single simple feature like a variable declaration
or a while loop. This involves first adding the appropriate productions to the CUP specification.
Build the parser and verify that you get no syntax errors when you parse source files containing
the new construct. Next, add constructor actions to your CUP specification to build ASTs for the
construct you've added. Then defibnparse in the nodes you've built to unparse ASTs for
this construct. Now you should be able to verify the ASTs you built are correct by looking at the
unparsing you generate.

After you have added a few constructs, you should have a good understanding of all the steps
involved. Then you can incrementally add the complete set of CSX productions to your CUP
specification, eventually creating a complete CSX parser and unparser.

Error Handling
In the case of syntax errors CUP will calyntax_error () to print an error message and
then throw aSyntaxErrorException , indicating abnormal termination. The caller of your
parser should catch this exception, which indicates that because of errors no AST could be built.
CUP does provide a simple error recovery mechanism (using “error” markers). This is
described in 85 of the CUP manual. If you wish, you may experiment with syntactic error recov-
ery after your parser is fully operational.

11 of 12

What to Hand In

As input, your parser will take a text file on the command line, which will be passed to the
scanner to read and build tokens for the parser. You should test your parser on syntactically valid
and invalid programs. For invalid programs, your error messages should be clear and meaning-
ful. For valid programs, you should showeadableunparsed listing of the abstract syntax tree
that is created. Hand in a listing of your parser module and your CUP specification and a listing
of your parser’s execution on a variety of syntactically valid and invalid programs.

We've created a directory for you using your login #ts536-1/public/proj3/
handin . Copy into your handin directory READMEHile, a Makefile (if you changed the file
we provided), and all source filex(ip , .jlex and.java files) necessary to build an execut-
able version of your program. Do not hand in executableslass files. Name the class that
contains youmain P3.java

If you wish to claim extra credit;learly state what you've added and include examples of its
operation.

12 of 12

	CS 536 — Spring 2006
	Programming Assignment 3 CSX Parser
	Table 1. ��Classes Used to Define AST Nodes in CSX

