
r that
n the

C++.

s-
pt

these
CS 536 — Spring 2006

Programming Assignment 3
CSX Parser

Due: Wednesday, March 22, 2006

Not accepted after Wednesday, March 29, 2006

You are to write a Java CUP parser specification to implement a CSX parser. A gramma
defines CSX’s syntax appears below. You should examine the grammar carefully to lear
structure of CSX constructs. In most cases, structures are very similar to those of Java and
Note that at this stage you need not understand exactly what each constructdoes, but rather just
what each constructlooks like.

The CSX grammar listed below encodes the fact that the unary! and type cast operators
have the highest precedence. The* and/ operators have the next highest precedence. The+ and
− operators have the third highest precedence. The relational operators (==, != , <, <=, >= and
>) have the fourth highest precedence. The boolean operators (&& and||) have the lowest pre-
cedence. Thus!A+B*C==3 || D!=F is equivalent to the following fully-parenthesized expre
sion: ((((!A)+(B*C))==3) || (D!=F)) . All binary operators are left-associative, exce
the relational operators which do not associate at all (i.e.,A==B==C is illegal). The unary oper-
ators are (of course) right-associative. Be sure that your parser for CSX properly reflects
precedence and associativity rules.

program → class id { memberdecls }
memberdecls → fielddecl memberdecls

| methoddecls
fielddecls → fielddecl fielddecls

| λ
methoddecls → methoddecl methoddecls

| λ
optionalSemi → ;

| λ
methoddecl → void id () { fielddecls stmts } optionalSemi

| void id (argdecls) { fielddecls stmts } optionalSemi
| type id () { fielddecls stmts } optionalSemi
| type id (argdecls) { fielddecls stmts } optionalSemi

argdecls → argdecl , argdecls
| argdecl

argdecl → type id
| type id []

fielddecl → type id ;
| type id = expr ;
| type id [intlit] ;
| const id = expr ;

stmts → stmt stmts
| stmt

stmt → if (expr) stmt

| if (expr) stmt else stmt
| while (expr) stmt
| id : while (expr) stmt
| name = expr ;
| read (readlist) ;
| print (writelist) ;
| id () ;
| id (args) ;
| return ;
| return expr ;
| break id ;
| continue id ;
| { fielddecls stmts } optionalSemi

type → int
| char
| bool

args → expr , args
| expr

readlist → name , readlist
| name

writelist → expr , writelist
| expr

expr → expr || term
| expr && term
| term

term → factor < factor
| factor > factor
| factor <= factor
| factor >= factor
| factor == factor
| factor != factor
| factor

factor → factor + pri
| factor - pri
| pri

pri → pri * unary
| pri / unary
| unary

unary → ! unary
| (type) unary
| unit

unit → name
| id ()
| id (args)
| intlit
| charlit
| strlit
| true
| false
| (expr)
2 of 12

ave
d in
ep-

say
 Run

mes-
ble to
ming

he

d
See
rates

ions
con-

P will
file

n codes.

-
).
that
name → id
| id [expr]

CSX Grammar
Using JavaCUP to Build a Parser

You will useJavaCUP, a Java-based parser generator, to build your CSX parser. You’ll h
to rewrite the CSX grammar into the format required by JavaCUP. This format is define
“CUP User’s Manual,” available in the “Useful Programming Tools” section of the class hom
age. A sample CUP specification corresponding toCSX-lite (a small subset of CSX) may be
found in~cs536-1/public/proj3/startup/lite.cup .

Once you’ve rewritten the CSX grammar we’ve provided and entered it into a file (
csx.cup), you can test whether the grammar can be parsed by a CUP-generated parser.

java java_cup.Main < csx.cup

Java CUP will generate a message
*** Shift/Reduce conflict found in state #XX

whereXX is a number that depends on the exact structure of the grammar you enter. This
sage indicates that the grammar we’ve provided is almost, but not quite, in a form accepta
CUP. This is a common occurrence. Most context-free grammars used to define program
languages can be handled by CUP, sometimes after minor modification.

The difficulty in this grammar is the well-known “dangling else” problem. That is, given t
statement

if (a) if (b) a=true; else b=true;

does theelse statement belong to the outer or innerif ? The grammar we’ve provided allows
either association. Thecorrectassociation is to match theelse part with the nearest unmatche
if . You must modify the grammar we’ve provided to enforce this “nearest match” rule.
§5.6 of the compiler notes for a more thorough discussion of the problem (CUP gene
LALR(1) parsers, so a correct grammarcan be written.)

You may rewrite the CSX grammar in any way you wish, adding or changing product
and nonterminals. Youcan’t change the CSX language itself (i.e., the sequences of tokens
sidered valid).

Once your grammar is in the right format and generates no error messages, Java CU
create a fileparser.java that contains the parser it has generated. It will also create a
sym.java that contains the token codes the parser is expecting. Usesym.java with JLex in
generating your scanner to guarantee that both the scanner and parser use the same toke

The generated parser, namedparse , is a member of classparser . It will call Scan-
ner.next_token () to get tokens. ClassScanner (provided by us) creates aYylex object
(a JLex scanner) and callsyylex () as necessary to provide tokens. Be sure to callScan-
ner.init(in) prior to parsing within , theFileInputStream you wish to scan from.

If there is a syntax error during parsing,parse () will throw a SyntaxErrorException ;
be sure to catch it. It will also callsyntax_error(token) to print an error message. We
provide a simple implementation ofsyntax_error in lite.cup (the Java CUP parser spec
ification for CSX-lite). You may improve it if you wish (perhaps to print the offending token
You should test your parser on a variety of simple inputs, both legal and illegal, to verify
your parser is operating correctly.
3 of 12

y cor-
ST).
CSX

f AST
corre-

l of

e-
s.

ues).
r-

ar
ill pro-
.

be
Generating Abstract Syntax Trees
So far your parser reads input tokens and determines whether they form a syntacticall

rect program. You now must extend your parser so that it builds an abstract syntax tree (A
The AST will be used by the type checker and code generator to complete compilation of a
program.

Abstract syntax tree nodes are defined as Java classes, with each particular kind o
node corresponding to a particular class. Thus the AST node for an assignment statement
sponds to the classasgNode . The classes comprising AST nodes are not independent. Al
them are direct or indirect subclasses of the following:

abstract class ASTNode {
int linenum;
int colnum;

static void genIndent(int indent){ ... }

ASTNode(){linenum=-1;colnum=-1;}
ASTNode(int l,int c){linenum=l;colnum=c;}
boolean isNull(){return false;}; // Is this node null?
void Unparse(int indent){};

};

ASTNode is the base class from which all other classes for AST nodes are created.AST-
Node is what is termed anabstract superclass. This means objects of this class are never cr
ated. Rather the definition serves to define the fields and methods shared by all subclasse

ASTNode contains two instance variables:linenum andcolnum . They represent the line
and column numbers of the tokens from which the AST node was built. Thus forasgNode , the
AST node for assignment statements,linenum andcolnum would correspond to the position
of the assignment’s target variable, since that’s where the assignment statement begins.

ASTNode also has two constructors that setlinenum andcolnum . These constructors are
called by constructors of subclasses to set these two fields (to either explicit or default val

The methodisNull is used to determine if a particular AST node is “null”; that is, if it co
responds toλ. Only special “null nodes” will define theirisNull function to return true; other
AST nodes will inherit the definition inASTNode.

The methodUnparse is used to “unparse” an AST node—that is, to print it out in a cle
human-readable form. Unparsing will be discussed below. We expect that each subclass w
vide its own definition ofUnparse ; the default—to print nothing—is usually inappropriate
Thus theasgNode ’s Unparse function will define how assignment statements are to
printed. Clearly each kind of AST node should have its own unparsing rules. MembergenIn-
dent is a utility routine used byUnparse .

An example of an AST node that we will build as a CSX program is parsed is:

class classNode extends ASTNode {
classNode(identNode id, memberDeclsNode m,

int line,int col){ ... }
void Unparse(int indent) { ... }
private identNode className;
private memberDeclsNode members;

};
4 of 12

-
t also

s a
and

erals

rent
ind of

field
icular
ode,”
act.
ethods,

at all
check

s.

value

y

ary to
of the

ield

ST.

ut not
ng
em by
nts
e

classNode corresponds to the start symbol of all CSX programs,program. classNode
is a subclass ofASTNode, so it inherits all ofASTNode’s fields and members. It contains a con
structor, as all AST nodes will. This constructor sets the private members of the class. I
callsASTNode’s constructor to setlinenum andcolnum . Unparse provides a definition of
unparsing appropriate to the program structure the class represents. SinceclassNode corre-
sponds to a non-λ construct, it is content to inherit and useASTNode’s definition of isNull .

classNode also contains two private fields. These correspond to the two subtree
classNode will contain: the name of the class (an identifier), and the declarations (fields
methods) within the class. The type declarations tell uspreciselythe kind of subtrees that are
permitted. Thus if we tried to assign a subtree corresponding to an integer literal toclass-
Name, we’d get a Java type error, because the AST node corresponding to integer lit
(intLitNode) is different that the typeclassName expects (which isidentNode).

This explains why we’ve created so many different classes for AST nodes. Each diffe
kind of node has its own class, and it is wrong to assign a class corresponding to one k
AST node to a field expecting a different kind of AST node.

We list below (in Table 1) all the AST classes that we use. For each class, we list the
names in that class and the type of each field. This type will usually be a reference to a part
AST class object. In some cases a field may reference a special kind of AST node, a “null n
that corresponds toλ. That is, if a subtree is empty, we’ll use a null node to represent that f
For example, in a class method declarations are optional. If a class chooses to have no m
the methods field in memberDeclsNode will point to a nullFieldDeclsNode . As you
might expect, null nodes have no internal fields. They simply serve as placeholders so th
subtrees that are expected are always present. Without null nodes, you’d have to routinely
if an AST reference is null before you use it, which is tedious and error-prone.

Some AST nodes are always leaves (e.g.,identNode); others have one or more subtree
Thus theasgNode has two subtrees, one for the name being assigned to (target) and the
other for the expression being assigned (source).

The AST nodesidentNode , intLitNode , charLitNode and strLitNode do not
have subtrees, but do contain the string value, integer value, character value, or string
returned by the scanner (in token objects). Leaf nodes liketrueNode and boolTypeNode
have no fields (other thanlinenum andcolnum inherited from their superclass). This simpl
means that for such nodes we need no information beyond their class.

Null nodes are used to represent null subtrees. Java’s strict type rules make it necess
create several different classes for null nodes. However, it is easy to reference a null node
correct type. If you want a null node that can be assigned to a field of classXXX, then
XXX.NULL is the null node you want. For example, if you want to assign a null node to a f
expecting astmtNode , thenstmtNode.NULL is the value you should use.

It is better to reference a null node than to store anull value. If all object references in AST
nodes point tosomething then we never have to check a reference before we use it.

BesidesastNode , we will use a number of other abstract superclasses to build our A
One of these isstmtNode . We will never actually create a node of typestmtNode . But then
why do we bother to define it?

Sometimes we want to be able to reference one of a number of kinds of AST nodes, b
just any node. Thus in astmtNode we want to reference any kind of AST node correspondi
to a statement, but not AST nodes corresponding to non-statements. We solve this probl
declaring a reference to have typestmtNode . We make all classes corresponding to stateme
(like asgNode or readNode) subclassesof stmtNode . The rules of Java say that a referenc
to a classS may be assigned an object of anysubclassof S. This is because a subclass ofS con-
tains everythingS does (and perhaps more). Thus anasgNode may be assigned to a variable
5 of 12

u’ll
ode’s
expecting astmtNode without error. However an AST node that is not a subclass ofstmt-
Node (e.g., boolTypeNode) may not be legally assigned to a variable expecting astmt-
Node.

Although the set of class definitions inast.java looks complex, the main benefit of using
them is that it becomes very difficult to insert AST nodes in the wrong place. If you try, yo
get an error message complaining that the type of node you are trying to assign to an AST n
field is illegal. In Table 2, below, we list all the AST nodes that appears inast.java and their
superclass.

Java class Fields Used Type of Fields Null node
allowed?

classNode className

members

identNode

memberDeclsNode

No

Yes

memberDeclsNode fields

methods

fieldDeclsNode

methodDeclsNode

Yes

Yes

fieldDeclsNode thisField

moreFields

declNode

fieldDeclsNode

No

Yes

varDeclNode varName

varType

initValue

identNode

typeNode

exprNode

No

No

Yes

constDeclNode constName

constValue

identNode

exprNode

No

No

arrayDeclNode arrayName

elementType

arraySize

identNode

typeNode

intLitNode

No

No

No

intTypeNode

boolTypeNode

charTypeNode

voidTypeNode

methodDeclsNode thisDecl

moreDecls

methodDeclNode

methodDeclsNode

No

Yes

methodDeclNode name

args

returnType

decls

stmts

identNode

argDeclsNode

typeNode

fieldDeclsNode

stmtsNode

No

Yes

No

Yes

No

argDeclsNode thisDecl

moreDecls

argDeclNode

argDeclsNode

No

Yes

arrayArgDeclNode argName

elementType

identNode

typeNode

No

No

Table 1. Classes Used to Define AST Nodes in CSX
6 of 12

valArgDeclNode argName

argType

identNode

typeNode

No

No

stmtsNode thisStmt

moreStmts

stmtNode

stmtsNode

No

Yes

asgNode target

source

nameNode

exprNode

No

No

ifThenNode condition

thenPart

elsePart

exprNode

stmtNode

stmtNode

No

No

Yes

whileNode label

condition

loopBody

exprNode

exprNode

stmtNode

Yes

No

No

readNode targetVar

moreReads

nameNode

readNode

No

Yes

printNode outputValue

morePrints

exprNode

printNode

No

Yes

callNode methodName

args

identNode

argsNode

No

Yes

returnNode returnVal exprNode Yes

breakNode label identNode No

continueNode label identNode No

blockNode decls

stmts

fieldDeclsNode

stmtsNode

Yes

No

argsNode argVal

moreArgs

exprNode

argsNode

No

Yes

strLitNode strval String No

binaryOpNode leftOperand

rightOperand

operatorCode

exprNode

exprNode

int

No

No

No

unaryOpNode operand

operatorCode

exprNode

int

No

No

castNode resultType

operand

typeNode

exprNode

No

No

fctCallNode methodName

methodArgs

identNode

argsNode

No

Yes

identNode idname String No

nameNode varName

subscriptVal

identNode

exprNode

No

Yes

Java class Fields Used Type of Fields Null node
allowed?

Table 1. Classes Used to Define AST Nodes in CSX
7 of 12

d

Getting Started
We’ve placed skeleton files for the project in~cs536-1/public/proj3/startup .

Look at file ast.java . This file will create a large number of “.class” files (one for each kin
of AST node, as well as others). To keep your project directory manageable, theMakefile
places all “.class” files in a subdirectory,classes . Be sure yourCLASSPATHenvironment
variable to include this directory.

If you haven’t already done so,update your .cshrc.local file (which can be found in

intLitNode intval int No

charLitNode charval char No

trueNode none

falseNode none

null nodes

(many kinds)

none

AST Node Superclass AST Node Superclass

argDeclNode ASTNode argDeclsNode ASTNode

argsNode ASTNode arrayArgDeclNode argDeclNode

arrayDeclNode declNode asgNode stmtNode

binaryOpNode exprNode blockNode stmtNode

boolTypeNode typeNode breakNode stmtNode

callNode stmtNode castNode exprNode

charLitNode exprNode charTypeNode typeNode

classNode ASTNode constDeclNode declNode

continueNode stmtNode declNode ASTNode

exprNode ASTNode falseNode exprNode

fctCallNode exprNode fieldDeclsNode ASTNode

identNode exprNode ifThenNode stmtNode

intLitNode exprNode intTypeNode typeNode

memberDeclsNode ASTNode methodDeclNode ASTNode

methodDeclsNode ASTNode nameNode exprNode

nullNode ASTNode printNode stmtNode

readNode stmtNode returnNode stmtNode

stmtNode ASTNode stmtsNode ASTNode

strLitNode exprNode trueNode exprNode

typeNode ASTNode unaryOpNode exprNode

valArgDeclNode argDeclNode varDeclNode declNode

whileNode stmtNode voidTypeNode typeNode

Table 2 Classes Used in AST Nodes and Their Superclasses

Java class Fields Used Type of Fields Null node
allowed?

Table 1. Classes Used to Define AST Nodes in CSX
8 of 12

sing
bed

ining
ple

is
-

he
assign-
P)
ady
sign-

r

the
nts
nd

to an
r. The
ically

suffix
ol to

r-
your home directory) to contain:

setenv CLASSPATH ".:./classes:/s/java/jre/lib/rt.jar:/p/course/
cs536-reps/public/JAVA"

setenv VPATH "./classes"

(These are two lines, not three. Ignore the line break after the /. This lines are exactly the

same as we used in projects 1 and 2)

Building ASTs in Java CUP

We’ll need to build ASTs for CSX programs we have parsed. One of the reasons we’re u
Java CUP to build our parser is that it’s easy to build ASTs using CUP. CUP allows us to em
actions, in the form of Java code, in the productions CUP parses. When a production conta
an action is matched byparse (), the associated action is automatically executed. For exam
in the following rule (drawn fromlite.cup)

stmt ::= ident:id ASG exp:e SEMI
{: RESULT =

new asgNode(id, e, id.linenum, id.colnum);
:}

the productionstmt → ident = expr ; is specified. Moreover, whenever this production
matched, the constructorasgNode is called (sinceasgNode corresponds to assignment state
ments). The constructor forasgNode wants four things: ASTs nodes corresponding to t
source and target of the assignment, and a line and column number to associate with the
ment. The special suffixes:id and:e represent references (automatically maintained by CU
to the ASTs for theident and expr that have already been parsed. These ASTs have alre
been built by the time this production is matched. We define the line and column of the as
ment to be the line and column of the leftmost symbol in the assignment, which is theident.
Since,id references the AST node built forident, id.linenum represents the line numbe
already stored for the identifier.

After astNode builds a new AST node for the assignment and links in its subtrees,
result is assigned toRESULT. RESULTis a special symbol, maintained by CUP, that represe
the lefthand side non-terminal (stmt). As productions are matched, AST subtrees are built a
merged into progressively larger trees. Finally, when the first production (corresponding
entire program) is matched, the root of the complete AST can be returned by the parse
bookkeeping required to maintain AST pointers as productions are matched is automat
done by CUP, using theRESULT and:name notation.

Information placed in tokens returned by the scanner can also be easily accessed. A
placed after a terminal symbol allows the token object corresponding to the terminal symb
be accessed. Thus the rule

exp ::= exp:l PLUS:op ident:r
{: RESULT = new binaryOpNode(l, sym.PLUS, r,

op.linenum, op.colnum); :}

uses thelinenum and colnum values of thePLUS token (extracted asop.linenum and
op.colnum) in constructing abinaryOpNode that represents the AST for the addition ope
ation.
9 of 12

r are

ype

syntax
ction
d)

g and
ts and
using

ct that
that
re the

pattern

ncodes
ould be

er to
.)
The objects referenced for each terminal and non-terminal symbol in the gramma
defined usingterminal andnon terminal directives. The lines

terminal CSXIdentifierToken IDENTIFIER;
terminal CSXToken SEMI, LPAREN, RPAREN, ASG, LBRACE, RBRACE;

tell Java CUP that the tokens for';' , '(' , ')' , etc. will all be instances of classCSXToken,
while theIDENTIFIER token will be an instance of classCSXIdentifierToken . The lines

non terminal csxLiteNode prog;
non terminal stmtsNode stmts;

say that the nonterminalprog will reference classcsxLiteNode , while the nonterminal
stmts will referencestmtsNode .

The member functionparse (), which is the CUP-generated parser, returns an object of t
Symbol . For successful parses, this will be the start symbol (program) of the derivation. The
value field of the returnedSymbol will contain the AST corresponding toprogram.

Unparsing
For grading, testing and debugging purposes, it is necessary to display the abstract

tree your parser creates. A convenient way to do this is to create a member fun
Unparse(int indent) that prints out the node’s structure in conventional (text-oriente
form. (indent is the number of tabs to indent prior to printing the node’s structure.)Unparse
“pretty prints” the construct, adding new lines and tabs as appropriate to create a pleasin
easily-readable listing. For constructs that are forced to begin on a new line (like statemen
declarations) you should print a line number at the beginning of the construct’s unparsing
the linenum value stored in the AST node. Note that the line numbers printedmay notbe con-
secutive since they correspond to the original input text. Moreover, some parts of a constru
appear on a new line (like the '}' at the end of the class definition) will get a line number
appears “out of order” since the line number stored with an AST node corresponds to whe
constructbegan.

Each abstract syntax tree node is associated with a production that can be viewed as a
that specifies how a node is to be displayed. For example given anasgNode , which will always
be printed on a new line, we would first print out the line number (using the node’slinenum
value) and indent usingUnparse ’s indent parameter. We then calltarget.Unparse(0)
(to print the target variable, without indenting), print '=', call source.Unparse(0) (to print
the source expression, without indenting), and finally print '; '.

For intLitNode s we printintval . For strLitNode s we printstrval (which is the
full string representation, with quotes and escapes). ForcharLitNode s print charval as a
quoted character in fully escaped form. ForidentNode s the unparser should useidname
which is the text of the identifier.

Abstract syntax trees for expressions contain no parentheses since the tree structure e
how operands are grouped. When expressions are unparsed, explicit parentheses sh
added to guarantee that expressions are properly interpreted. HenceA+B*C would be unparsed
to (A+(B*C)) . (Fancier unparsers that only print necessary parentheses are a bit hard
write. An unparser that prints parentheses only when really necessary will get extra credit
10 of 12

build
e’ve

e pro-
rs,

f the
d in
orre-
cing

s in
ely

ation
tion.
ining
r the
r
t the

steps
CUP

r
built.

is is
cov-
What You Must Do
This project step is not nearly as hard as it looks, because you have CUP to help you

your parser. Still, it helps a lot to see an example of all the pieces you’ll need to complete. W
created a small subset of CSX, calledCSX-lite, that’s defined by the following productions:

program → { stmts }
stmts → stmt stmts

| λ
stmt → id = expr ;

| if (expr) stmt
expr → expr + id

| expr - id
| id

CSX-lite Grammar

This simple subset contains no declarations; only an assignment and if statement ar
vided and expressions involve only+, − and identifiers. Complete CUP specifications, parse
AST builders and unparsers for CSX-lite may be found in~cs536-1/public/proj3/
startup . Just type

make test

to build a complete parser for CSX-lite and then test it using a simple source program.
You should look at what we’ve provided to make sure you understand how each step o

project works for CSX-lite. Basically, ASTs are built using calls to constructors as illustrate
lite.cup . Once an individual production is matched by the parser, a constructor for the c
sponding AST node is called. You should substitute your scanner from project 2, by repla
lite.jlex with yourcsx.jlex file.

Unparsing functions, one for each AST node that is built, are member function
ast.java . Each such routine is fairly simple—the information in the node is printed in nic
formatted form, with recursive calls toUnparse to unparse subcomponents.

Once you’re clear on what’s going on, add a single simple feature like a variable declar
or a while loop. This involves first adding the appropriate productions to the CUP specifica
Build the parser and verify that you get no syntax errors when you parse source files conta
the new construct. Next, add constructor actions to your CUP specification to build ASTs fo
construct you’ve added. Then defineUnparse in the nodes you’ve built to unparse ASTs fo
this construct. Now you should be able to verify the ASTs you built are correct by looking a
unparsing you generate.

After you have added a few constructs, you should have a good understanding of all the
involved. Then you can incrementally add the complete set of CSX productions to your
specification, eventually creating a complete CSX parser and unparser.

Error Handling
In the case of syntax errors CUP will callsyntax_error () to print an error message and

then throw aSyntaxErrorException , indicating abnormal termination. The caller of you
parser should catch this exception, which indicates that because of errors no AST could be

CUP does provide a simple error recovery mechanism (using “error” markers). Th
described in §5 of the CUP manual. If you wish, you may experiment with syntactic error re
ery after your parser is fully operational.
11 of 12

the
valid

aning-
e
sting

-

its
What to Hand In
As input, your parser will take a text file on the command line, which will be passed to

scanner to read and build tokens for the parser. You should test your parser on syntactically
and invalid programs. For invalid programs, your error messages should be clear and me
ful. For valid programs, you should show areadableunparsed listing of the abstract syntax tre
that is created. Hand in a listing of your parser module and your CUP specification and a li
of your parser’s execution on a variety of syntactically valid and invalid programs.

We’ve created a directory for you using your login in~cs536-1/public/proj3/
handin . Copy into your handin directory aREADMEfile, a Makefile (if you changed the file
we provided), and all source files (.cup , .jlex and.java files) necessary to build an execut
able version of your program. Do not hand in executables or.class files. Name the class that
contains yourmain P3.java .

If you wish to claim extra credit,clearly state what you’ve added and include examples of
operation.
12 of 12

	CS 536 — Spring 2006
	Programming Assignment 3 CSX Parser
	Table 1. ��Classes Used to Define AST Nodes in CSX

