
43CS 536 Spring 2006
©

Interpreters
There are two different kinds of
interpreters that support execution of
programs, machine interpreters and
language interpreters.

Machine Interpreters
A machine interpreter simulates the
execution of a program compiled for
a particular machine architecture.
Java uses a bytecode interpreter to
simulate the effects of programs
compiled for the JVM. Programs like
SPIM simulate the execution of a
MIPS program on a non-MIPS
computer.

44CS 536 Spring 2006
©

Language Interpreters
A language interpreter simulates the
effect of executing a program
without compiling it to any particular
instruction set (real or virtual).
Instead some IR form (perhaps an
AST) is used to drive execution.
Interpreters provide a number of
capabilities not found in compilers:

• Programs may be modified as execution
proceeds. This provides a straightforward
interactive debugging capability.
Depending on program structure,
program modifications may require
reparsing or repeated semantic analysis.
In Python, for example, any string
variable may be interpreted as a Python
expression or statement and executed.

45CS 536 Spring 2006
©

• Interpreters readily support languages in
which the type of a variable denotes may
change dynamically (e.g., Python or
Scheme). The user program is
continuously reexamined as execution
proceeds, so symbols need not have a
fixed type. Fluid bindings are much more
troublesome for compilers, since dynamic
changes in the type of a symbol make
direct translation into machine code
difficult or impossible.

• Interpreters provide better diagnostics.
Source text analysis is intermixed with
program execution, so especially good
diagnostics are available, along with
interactive debugging.

• Interpreters support machine
independence. All operations are
performed within the interpreter. To

46CS 536 Spring 2006
©

move to a new machine, we just
recompile the interpreter.

However, interpretation can involve
large overheads:

• As execution proceeds, program text is
continuously reexamined, with bindings,
types, and operations sometimes
recomputed at each use. For very
dynamic languages this can represent a
100:1 (or worse) factor in execution
speed over compiled code. For more
static languages (such as C or Java), the
speed degradation is closer to 10:1.

• Startup time for small programs is
slowed, since the interpreter must be
load and the program partially
recompiled before execution begins.

47CS 536 Spring 2006
©

• Substantial space overhead may be
involved. The interpreter and all support
routines must usually be kept available.
Source text is often not as compact as if
it were compiled. This size penalty may
lead to restrictions in the size of
programs. Programs beyond these built-
in limits cannot be handled by the
interpreter.

Of course, many languages (including, C,
C++ and Java) have both interpreters
(for debugging and program
development) and compilers (for
production work).

48CS 536 Spring 2006
©

Symbol Tables & Scoping
Programming languages use scopes to
limit the range an identifier is active
(and visible).
Within a scope a name may be
defined only once (though
overloading may be allowed).
A symbol table (or dictionary) is
commonly used to collect all the
definitions that appear within a
scope.
At the start of a scope, the symbol
table is empty. At the end of a scope,
all declarations within that scope are
available within the symbol table.
A language definition may or may not
allow forward references to an
identifier.

49CS 536 Spring 2006
©

If forward references are allowed, you
may use a name that is defined later
in the scope (Java does this for field
and method declarations within a
class).
If forward references are not allowed,
an identifier is visible only after its
declaration. C, C++ and Java do this
for variable declarations.
In CSX no forward references are
allowed.
In terms of symbol tables, forward
references require two passes over a
scope. First all declarations are
gathered. Next, all references are
resolved using the complete set of
declarations stored in the symbol
table.

50CS 536 Spring 2006
©

If forward references are disallowed,
one pass through a scope suffices,
processing declarations and uses of
identifiers together.

51CS 536 Spring 2006
©

Block Structured Languages
• Introduced by Algol 60, includes C, C++,

CSX and Java.

• Identifiers may have a non-global scope.
Declarations may be local to a class,
subprogram or block.

• Scopes may nest, with declarations
propagating to inner (contained) scopes.

• The lexically nearest declaration of an
identifier is bound to uses of that
identifier.

52CS 536 Spring 2006
©

Example (drawn from C):

int x,z;
void A() {

float x,y;
 print(x,y,z);

}
void B() {
 print (x,y,z)

}

float
float

int

int

int
undeclared

53CS 536 Spring 2006
©

Block Structure Concepts
• Nested Visibility

No access to identifiers outside their
scope.

• Nearest Declaration Applies
Using static nesting of scopes.

• Automatic Allocation and Deallocation
of Locals

Lifetime of data objects is bound to
the scope of the Identifiers that
denote them.

54CS 536 Spring 2006
©

Block-Structured Symbol
Tables

Block structured symbol tables are
designed to support the scoping rules
of block structured languages.
For our CSX project we’ll use class
Symb to represent symbols and
SymbolTable to implemented
operations needed for a block-
structured symbol table.

Class Symb will contain a method
public String name()

that returns the name associated with
a symbol.

55CS 536 Spring 2006
©

Class SymbolTable contains the
following methods:
• public void openScope() {

A new and empty scope is opened.

• public void closeScope() throws

EmptySTException

The innermost scope is closed. An
exception is thrown if there is no
scope to close.

• public void insert(Symb s)
throws DuplicateException,

EmptySTException

A Symb is inserted in the innermost
scope. An exception is thrown if a
Symb with the same name is already
in the innermost scope or if there is
no symbol table to insert into.

56CS 536 Spring 2006
©

• public Symb localLookup(String s)

The innermost scope is searched for a
Symb whose name is equal to s . Null
is returned if no Symb named s is
found.

• public Symb globalLookup(String s)

All scopes, from innermost to
outermost, are searched for a Symb
whose name is equal to s . The first
Symb that matches s is found;
otherwise null is returned if no
matching Symb is found.

57CS 536 Spring 2006
©

Is Case Significant?
In some languages (C, C++, Java and
many others) case is significant in
identifiers. This means aa and AA are
different symbols that may have
entirely different definitions.
In other languages (Pascal, Ada,
Scheme, CSX) case is not significant.
In such languages aa and AA are two
alternative spellings of the same
identifier.
Data structures commonly used to
implement symbol tables usually treat
different cases as different symbols.
This is fine when case is significant in
a language. When case is
insignificant, you probably will need
to strip case before entering or
looking up identifiers.

58CS 536 Spring 2006
©

This just means that identifiers are
converted to a uniform case before
they are entered or looked up. Thus if
we choose to use lower case
uniformly, the identifiers aaa , AAA,
and AaA are all converted to aaa for
purposes of insertion or lookup.
BUT, inside the symbol table the
identifier is stored in the form it was
declared so that programmers see the
form of identifier they expect in
listings, error messages, etc.

59CS 536 Spring 2006
©

How are Symbol Tables
Implemented?

There are a number of data structures
that can reasonably be used to
implement a symbol table:
• An Ordered List

Symbols are stored in a linked list,
sorted by the symbol’s name. This is
simple, but may be a bit too slow if
many identifiers appear in a scope.

• A Binary Search Tree
Lookup is much faster than in a
linked list, but rebalancing may be
needed. (Entering identifiers in sorted
order can turn a search tree into a
linked list.)

• Hash Tables
The most popular choice.

60CS 536 Spring 2006
©

Implementing Block-
Structured Symbol Tables

To implement a block structured
symbol table we need to be able to
efficiently open and close individual
scopes, and limit insertion to the
innermost current scope.
This can be done using one symbol
table structure if we tag individual
entries with a “scope number.”
It is far easier (but more wasteful of
space) to allocate one symbol table
for each scope. Open scopes are
stacked, pushing and popping tables
as scopes are opened and closed.
Be careful though—many
preprogrammed stack
implementations don’t allow you to

61CS 536 Spring 2006
©

“peek” at entries below the stack top.
This is necessary to lookup an
identifier in all open scopes.
If a suitable stack implementation
(with a peek operation) isn’t
available, a linked list of symbol
tables will suffice.

62CS 536 Spring 2006
©

More on Hashtables
Hashtables are a very useful data
structure. Java provides a predefined
Hashtable class. Python includes a
built-in dictionary type.
Every Java class has a hashCode
method, which allows any object to
be entered into a Java Hashtable .
For most objects, hash codes are
pretty simple (the address of the
corresponding object is often used).
But for strings Java uses a much more

elaborate hash function:

n is the length of the string, ci is the
i-th character and all arithmetic is
done without overflow checking.

ci 37× i

i 0=

n 1–

∑

63CS 536 Spring 2006
©

Why such an elaborate hash
function?
Simpler hash functions can have
major problems.

Consider (add the characters).

For short identifiers the sum grows
slowly, so large indices won’t often be
used (leading to non-uniform use of
the hash table).

We can try (product of

characters), but now (surprisingly)
the size of the hash table becomes an
issue. The problem is that if even one
character is encoded as an even
number, the product must be even.

ci
i 0=

n 1–

∑

ci
i 0=

n 1–

∏

64CS 536 Spring 2006
©

If the hash table is even in size (a
natural thing to do), most hash table
entries will be at even positions.
Similarly, if even one character is
encoded as a multiple of 3, the whole
product will be a multiple of 3, so
hash tables that are a multiple of
three in size won’t be uniformly used.
To see how bad things can get,
consider a hash table with size 210
(which is equal to 2×3×5×7). This
should be a particularly bad table size
if a product hash is used. (Why?)
Is it? As an experiment, all the words
in the Unix spell checker’s dictionary
(26000 words) where entered. Over
50% (56.7% actually) hit position 0
in the table!

65CS 536 Spring 2006
©

Why such non-uniformity?
If an identifier contains characters
that are multiples of 2, 3, 5 and 7,
then their hash will be a multiple of
210 and will map to position 0.
For example, in Wisconsin , n has an
ASCII code of 110 (2×55) and i has a
code of 105 (7×5×3).
If we change the table size ever so
slightly, to 211, no table entry gets
more than 1% of the 26000 words
hashed, which is very good.
Why such a big difference? Well 211
is prime and there is a bit a folk-
wisdom that states that prime
numbers are good choices for hash
table sizes. Now our product hash will
cover table entries far more uniformly

66CS 536 Spring 2006
©

(small factors in the hash don’t divide
the table size evenly).
Now the reason for Java’s more
complex string hash function
becomes evident—it can uniformly fill
a hash table whose size isn’t prime.

67CS 536 Spring 2006
©

How are Collisions Handled?
Since identifiers are often unlimited
in length, the set of possible
identifiers is infinite. Even if we limit
ourselves is short identifiers (say 10
of fewer characters), the range of
valid identifiers is greater than 2610.
This means that all hash tables need
to contend with collisions, when two
different identifiers map to the same
place in the table.
How are collisions handled?
The simplest approach is linear
resolution. If identifier id hashes to
position p in a hash table of size s
and position p is already filled, we try
(p+1) mod s , then (p+2) mod s ,
until a free position is found.

68CS 536 Spring 2006
©

As long as the table is not too filled,
this approach works well. When we
approach an almost-filled situation,
long search chains form, and we
degenerate to an unordered list.
If the table is 100% filled, linear
resolution fails.
Some hash table implementations,
including Java’s, set a load factor
between 0 and 1.0. When the fraction
of filled entries in the table exceeds
the load factor, table size is increased
and all entries are rehashed.
Note that bundling of a hashCode
method within all Java objects makes
rehashing easy to do automatically. If
the hash function is external to the
symbol table entries, rehashing may
need to be done manually by the user.

69CS 536 Spring 2006
©

An alternative to linear resolution is
chained resolution, in which symbol
table entries contain pointers to
chains of symbols rather than a single
symbol. All identifiers that hash to
the same position appear on the same
chain. Now overflowing table size is
not catastrophic—as the table fills,
chains from each table position get
longer. As long as the table is not too
overfilled, average chain length will
be small.

