
87CS 536 Spring 2006
©

Finite Automata and Scanners
A finite automaton (FA) can be used
to recognize the tokens specified by a
regular expression. FAs are simple,
idealized computers that recognize
strings belonging to regular sets. An
FA consists of:
• A finite set of states

• A set of transitions (or moves) from
one state to another, labeled with
characters in Σ

• A special state called the start state

• A subset of the states called the
accepting, or final, states

88CS 536 Spring 2006
©

These four components of a finite
automaton are often represented
graphically:

Finite automata (the plural of
automaton is automata) are
represented graphically using
transition diagrams. We start at the
start state. If the next input character
matches the label on a transition

is a transition

is the start state

is an accepting state

is a state

89CS 536 Spring 2006
©

from the current state, we go to the
state it points to. If no move is
possible, we stop. If we finish in an
accepting state, the sequence of
characters read forms a valid token;
otherwise, we have not seen a valid
token.

In this diagram, the valid tokens are
the strings described by the regular
expression (a b (c)+)+.

a b c

c

a

90CS 536 Spring 2006
©

Deterministic Finite Automata
As an abbreviation, a transition may
be labeled with more than one
character (for example, Not(c)). The
transition may be taken if the current
input character matches any of the
characters labeling the transition.
If an FA always has a unique
transition (for a given state and
character), the FA is deterministic
(that is, a deterministic FA, or DFA).
Deterministic finite automata are
easy to program and often drive a
scanner.
If there are transitions to more than
one state for some character, then the
FA is nondeterministic (that is, an
NFA).

91CS 536 Spring 2006
©

A DFA is conveniently represented in
a computer by a transition table. A
transition table, T, is a two
dimensional array indexed by a DFA
state and a vocabulary symbol.
Table entries are either a DFA state or
an error flag (often represented as a
blank table entry). If we are in state
s, and read character c, then T[s,c]
will be the next state we visit, or
T[s,c] will contain an error marker
indicating that c cannot extend the
current token. For example, the
regular expression

// Not(Eol) * Eol

which defines a Java or C++ single-
line comment, might be translated
into

92CS 536 Spring 2006
©

The corresponding transition table is:

A complete transition table contains
one column for each character. To
save space, table compression may be
used. Only non-error entries are
explicitly represented in the table,
using hashing, indirection or linked
structures.

State Character
/ Eol a b …

1 2
2 3
3 3 4 3 3 3
4

eof

Eol/ /

Not(Eol)

1 2 3 4

93CS 536 Spring 2006
©

All regular expressions can be
translated into DFAs that accept
(as valid tokens) the strings defined
by the regular expressions. This
translation can be done manually by a
programmer or automatically using a
scanner generator.
A DFA can be coded in:
• Table-driven form

• Explicit control form
In the table-driven form, the
transition table that defines a DFA’s
actions is explicitly represented in a
run-time table that is “interpreted”
by a driver program.
In the direct control form, the
transition table that defines a DFA’s
actions appears implicitly as the
control logic of the program.

94CS 536 Spring 2006
©

For example, suppose CurrentChar is
the current input character. End of
file is represented by a special
character value, eof . Using the DFA
for the Java comments shown earlier,
a table-driven scanner is:
State = StartState

while (true){

if (CurrentChar == eof)
break

NextState =
T[State][CurrentChar]

 if(NextState == error)
break

State = NextState

read(CurrentChar)

}

if (State in AcceptingStates)

// Process valid token

else // Signal a lexical error

95CS 536 Spring 2006
©

This form of scanner is produced by a
scanner generator; it is definition-
independent. The scanner is a driver
that can scan any token if T contains
the appropriate transition table.
Here is an explicit-control scanner for
the same comment definition:
if (CurrentChar == '/'){

read(CurrentChar)

if (CurrentChar == '/')

repeat

read(CurrentChar)

until (CurrentChar in

{eol, eof})

else //Signal lexical error

else // Signal lexical error

if (CurrentChar == eol)

// Process valid token

else //Signal lexical error

96CS 536 Spring 2006
©

The token being scanned is
“hardwired” into the logic of the
code. The scanner is usually easy to
read and often is more efficient, but
is specific to a single token definition.

97CS 536 Spring 2006
©

More Examples
• A FORTRAN-like real literal (which

requires digits on either or both sides
of a decimal point, or just a string of
digits) can be defined as

RealLit = (D + (λ | .)) | (D* . D+)

This corresponds to the DFA

. D

DD

D .

98CS 536 Spring 2006
©

• An identifier consisting of letters,
digits, and underscores, which begins
with a letter and allows no adjacent
or trailing underscores, may be
defined as

ID = L (L | D) * (_ (L | D)+)*

This definition includes identifiers
like sum or unit_cost , but
excludes _one and two_ and
grand___total . The DFA is:

L | D

L

L | D

_

99CS 536 Spring 2006
©

Lex/Flex/JLex
Lex is a well-known Unix scanner
generator. It builds a scanner, in C,
from a set of regular expressions that
define the tokens to be scanned.
Flex is a newer and faster version of
Lex.
Jlex is a Java version of Lex. It
generates a scanner coded in Java,
though its regular expression
definitions are very close to those
used by Lex and Flex.
Lex, Flex and JLex are largely non-
procedural. You don’t need to tell the
tools how to scan. All you need to tell
it what you want scanned (by giving
it definitions of valid tokens).

100CS 536 Spring 2006
©

This approach greatly simplifies
building a scanner, since most of the
details of scanning (I/O, buffering,
character matching, etc.) are
automatically handled.

101CS 536 Spring 2006
©

JLex
JLex is coded in Java. To use it, you
enter
java JLex.Main f.jlex

Your CLASSPATH should be set to
search the directories where JLex’s
classes are stored.
(The CLASSPATH we gave you
includes JLex’s classes).
After JLex runs (assuming there are
no errors in your token
specifications), the Java source file
f.jlex.java is created. (f stands for
any file name you choose. Thus
csx.jlex might hold token
definitions for CSX, and
csx.jlex.java would hold the
generated scanner).

102CS 536 Spring 2006
©

You compile f.jlex.java just like
any Java program, using your favorite
Java compiler.
After compilation, the class file
Yylex.class is created.
It contains the methods:
• Token yylex() which is the actual

scanner. The constructor for Yylex
takes the file you want scanned, so
new Yylex(System.in)
will build a scanner that reads from
System.in . Token is the token class
you want returned by the scanner;
you can tell JLex what class you want
returned.

• String yytext() returns the
character text matched by the last
call to yylex .

103CS 536 Spring 2006
©

A simple example of using JLex is in
~cs536-1/pubic/jlex
Just enter
make test

