
97CS 536 Spring 2006
©

More Examples
• A FORTRAN-like real literal (which

requires digits on either or both sides
of a decimal point, or just a string of
digits) can be defined as

RealLit = (D + (λ | .)) | (D* . D+)

This corresponds to the DFA

. D

DD

D .

98CS 536 Spring 2006
©

• An identifier consisting of letters,
digits, and underscores, which begins
with a letter and allows no adjacent
or trailing underscores, may be
defined as

ID = L (L | D) * (_ (L | D)+)*

This definition includes identifiers
like sum or unit_cost , but
excludes _one and two_ and
grand___total . The DFA is:

L | D

L

L | D

_

99CS 536 Spring 2006
©

Lex/Flex/JLex
Lex is a well-known Unix scanner
generator. It builds a scanner, in C,
from a set of regular expressions that
define the tokens to be scanned.
Flex is a newer and faster version of
Lex.
Jlex is a Java version of Lex. It
generates a scanner coded in Java,
though its regular expression
definitions are very close to those
used by Lex and Flex.
Lex, Flex and JLex are largely non-
procedural. You don’t need to tell the
tools how to scan. All you need to tell
it what you want scanned (by giving
it definitions of valid tokens).

100CS 536 Spring 2006
©

This approach greatly simplifies
building a scanner, since most of the
details of scanning (I/O, buffering,
character matching, etc.) are
automatically handled.

101CS 536 Spring 2006
©

JLex
JLex is coded in Java. To use it, you
enter
java JLex.Main f.jlex

Your CLASSPATH should be set to
search the directories where JLex’s
classes are stored.
(The CLASSPATH we gave you
includes JLex’s classes).
After JLex runs (assuming there are
no errors in your token
specifications), the Java source file
f.jlex.java is created. (f stands for
any file name you choose. Thus
csx.jlex might hold token
definitions for CSX, and
csx.jlex.java would hold the
generated scanner).

102CS 536 Spring 2006
©

You compile f.jlex.java just like
any Java program, using your favorite
Java compiler.
After compilation, the class file
Yylex.class is created.
It contains the methods:
• Token yylex() which is the actual

scanner. The constructor for Yylex
takes the file you want scanned, so
new Yylex(System.in)
will build a scanner that reads from
System.in . Token is the token class
you want returned by the scanner;
you can tell JLex what class you want
returned.

• String yytext() returns the
character text matched by the last
call to yylex .

103CS 536 Spring 2006
©

A simple example of using JLex is in
~cs536-1/pubic/jlex
Just enter
make test

104CS 536 Spring 2006
©

Input to JLex
There are three sections, delimited by
%%. The general structure is:
User Code

%%

Jlex Directives

%%

Regular Expression rules

The User Code section is Java source
code to be copied into the generated
Java source file. It contains utility
classes or return type classes you
need. Thus if you want to return a
class IntlitToken (for integer
literals that are scanned), you include
its definition in the User Code
section.

105CS 536 Spring 2006
©

JLex directives are various
instructions you can give JLex to
customize the scanner you generate.
These are detailed in the JLex manual.
The most important are:
• %{

Code copied into the Yylex
class (extra fields or
methods you may want)
%}

• %eof{
Java code to be executed when
the end of file is reached
%eof}

• %type classname
classname is the return type you
want for the scanner method,
yylex()

106CS 536 Spring 2006
©

Macro Definitions
In section two you may also define
macros, that are used in section three.
A macro allows you to give a name to
a regular expression or character
class. This allows you to reuse
definitions and make regular
expression rule more readable.
Macro definitions are of the form
name = def

Macros are defined one per line.
Here are some simple examples:
Digit=[0-9]

AnyLet=[A-Za-z]

In section 3, you use a macro by
placing its name within { and } . Thus
{Digit} expands to the character
class defining the digits 0 to 9.

107CS 536 Spring 2006
©

Regular Expression Rules
The third section of the JLex input
file is a series of token definition
rules of the form
RegExpr {Java code}

When a token matching the given
RegExpr is matched, the
corresponding Java code (enclosed in
“{“ and “}”) is executed. JLex figures
out what RegExpr applies; you need
only say what the token looks like
(using RegExpr) and what you want
done when the token is matched (this
is usually to return some token
object, perhaps with some processing
of the token text).

108CS 536 Spring 2006
©

Here are some examples:
"+" {return new Token(sym.Plus);}
(" ")+ {/* skip white space */}
{Digit}+ {return new

IntToken(sym.Intlit,
new Integer(yytext()).intValue());}

109CS 536 Spring 2006
©

Regular Expressions in JLex
To define a token in JLex, the user to
associates a regular expression with
commands coded in Java.
When input characters that match a
regular expression are read, the
corresponding Java code is executed.
As a user of JLex you don’t need to
tell it how to match tokens; you need
only say what you want done when a
particular token is matched.
Tokens like white space are deleted
simply by having their associated
command not return anything.
Scanning continues until a command
with a return in it is executed.
The simplest form of regular
expression is a single string that
matches exactly itself.

110CS 536 Spring 2006
©

For example,
if {return new Token(sym.If);}

If you wish, you can quote the string
representing the reserved word
("if"), but since the string contains
no delimiters or operators, quoting it
is unnecessary.
For a regular expression operator, like
+, quoting is necessary:
"+" {return new Token(sym.Plus);}

111CS 536 Spring 2006
©

Character Classes
Our specification of the reserved word
if, as shown earlier, is incomplete. We
don’t (yet) handle upper or mixed-
case.
To extend our definition, we’ll use a
very useful feature of Lex and JLex—
character classes.
Characters often naturally fall into
classes, with all characters in a class
treated identically in a token
definition. In our definition of
identifiers all letters form a class
since any of them can be used to
form an identifier. Similarly, in a
number, any of the ten digit
characters can be used.

112CS 536 Spring 2006
©

Character classes are delimited by [
and] ; individual characters are listed
without any quotation or separators.
However \ , ^ ,] and - , because of
their special meaning in character
classes, must be escaped. The
character class [xyz] can match a
single x , y, or z .
The character class [\])] can match
a single] or) .
(The] is escaped so that it isn’t
misinterpreted as the end of character
class.)
Ranges of characters are separated by
a - ; [x-z] is the same as [xyz] .
[0-9] is the set of all digits and
[a-zA-Z] is the set of all letters,
upper- and lower-case. \ is the
escape character, used to represent

113CS 536 Spring 2006
©

unprintables and to escape special
symbols.
Following C and Java conventions, \n
is the newline (that is, end of line),
\t is the tab character, \\ is the
backslash symbol itself, and \010 is
the character corresponding to octal
10.
The ^ symbol complements a
character class (it is JLex’s
representation of the Not operation).
[^xy] is the character class that
matches any single character except
x and y. The ^ symbol applies to all
characters that follow it in a
character class definition, so [^0-9]
is the set of all characters that aren’t
digits. [^] can be used to match all
characters.

114CS 536 Spring 2006
©

Here are some examples of character
classes:

Character
Class Set of Characters Denoted
[abc] Three characters: a, b and c
[cba] Three characters: a, b and c
[a-c] Three characters: a, b and c
[aabbcc] Three characters: a, b and c
[^abc] All characters except a, b

and c
[\^\-\]] Three characters: ^ , - and]
[^] All characters
"[abc]" Not a character class. This

is one five character string:
[abc]

115CS 536 Spring 2006
©

Regular Operators in JLex
JLex provides the standard regular
operators, plus some additions.
• Catenation is specified by the

juxtaposition of two expressions; no
explicit operator is used.
Outside of character class brackets,
individual letters and numbers match
themselves; other characters should
be quoted (to avoid misinterpretation
as regular expression operators).

Case is significant.

Regular Expr Characters Matched
a b cd Four characters: abcd
(a)(b)(cd) Four characters: abcd
[ab][cd] Four different strings: ac or

ad or bc or bd
while Five characters: while
" while " Five characters: while
[w][h][i][l][e] Five characters: while

116CS 536 Spring 2006
©

• The alternation operator is | .
Parentheses can be used to control
grouping of subexpressions.
If we wish to match the reserved
word while allowing any mixture
of upper- and lowercase, we can use
(w|W)(h|H)(i|I)(l|L)(e|E)
or
[wW][hH][iI][lL][eE]

Regular Expr Characters Matched
ab|cd Two different strings: ab or cd
(ab)|(cd) Two different strings: ab or cd
[ab]|[cd] Four different strings: a or b or

c or d

117CS 536 Spring 2006
©

• Postfix operators:
* Kleene closure: 0 or more matches
(ab)* matches λ or ab or abab or
ababab ...

+ Positive closure: 1 or more matches
(ab)+ matches ab or abab or
ababab ...

? Optional inclusion:
expr?

matches expr zero times or once.
expr? is equivalent to (expr) | λ
and eliminates the need for an
explicit λ symbol.
[-+]?[0-9]+ defines an optionally
signed integer literal.

118CS 536 Spring 2006
©

• Single match:
The character ". " matches any single
character (other than a newline).

• Start of line:
The character ^ (when used outside a
character class) matches the
beginning of a line.

• End of line:
The character $ matches the end of a
line. Thus,

^A.*e$
matches an entire line that begins
with A and ends with e.

