
111CS 536 Spring 2006
©

Character Classes
Our specification of the reserved word
if, as shown earlier, is incomplete. We
don’t (yet) handle upper or mixed-
case.
To extend our definition, we’ll use a
very useful feature of Lex and JLex—
character classes.
Characters often naturally fall into
classes, with all characters in a class
treated identically in a token
definition. In our definition of
identifiers all letters form a class
since any of them can be used to
form an identifier. Similarly, in a
number, any of the ten digit
characters can be used.

112CS 536 Spring 2006
©

Character classes are delimited by [
and] ; individual characters are listed
without any quotation or separators.
However \ , ^ ,] and - , because of
their special meaning in character
classes, must be escaped. The
character class [xyz] can match a
single x , y, or z .
The character class [\])] can match
a single] or) .
(The] is escaped so that it isn’t
misinterpreted as the end of character
class.)
Ranges of characters are separated by
a - ; [x-z] is the same as [xyz] .
[0-9] is the set of all digits and
[a-zA-Z] is the set of all letters,
upper- and lower-case. \ is the
escape character, used to represent

113CS 536 Spring 2006
©

unprintables and to escape special
symbols.
Following C and Java conventions, \n
is the newline (that is, end of line),
\t is the tab character, \\ is the
backslash symbol itself, and \010 is
the character corresponding to octal
10.
The ^ symbol complements a
character class (it is JLex’s
representation of the Not operation).
[^xy] is the character class that
matches any single character except
x and y. The ^ symbol applies to all
characters that follow it in a
character class definition, so [^0-9]
is the set of all characters that aren’t
digits. [^] can be used to match all
characters.

114CS 536 Spring 2006
©

Here are some examples of character
classes:

Character
Class Set of Characters Denoted
[abc] Three characters: a, b and c
[cba] Three characters: a, b and c
[a-c] Three characters: a, b and c
[aabbcc] Three characters: a, b and c
[^abc] All characters except a, b

and c
[\^\-\]] Three characters: ^ , - and]
[^] All characters
"[abc]" Not a character class. This

is one five character string:
[abc]

115CS 536 Spring 2006
©

Regular Operators in JLex
JLex provides the standard regular
operators, plus some additions.
• Catenation is specified by the

juxtaposition of two expressions; no
explicit operator is used.
Outside of character class brackets,
individual letters and numbers match
themselves; other characters should
be quoted (to avoid misinterpretation
as regular expression operators).

Case is significant.

Regular Expr Characters Matched
a b cd Four characters: abcd
(a)(b)(cd) Four characters: abcd
[ab][cd] Four different strings: ac or

ad or bc or bd
while Five characters: while
" while " Five characters: while
[w][h][i][l][e] Five characters: while

116CS 536 Spring 2006
©

• The alternation operator is | .
Parentheses can be used to control
grouping of subexpressions.
If we wish to match the reserved
word while allowing any mixture
of upper- and lowercase, we can use
(w|W)(h|H)(i|I)(l|L)(e|E)
or
[wW][hH][iI][lL][eE]

Regular Expr Characters Matched
ab|cd Two different strings: ab or cd
(ab)|(cd) Two different strings: ab or cd
[ab]|[cd] Four different strings: a or b or

c or d

117CS 536 Spring 2006
©

• Postfix operators:
* Kleene closure: 0 or more matches
(ab)* matches λ or ab or abab or
ababab ...

+ Positive closure: 1 or more matches
(ab)+ matches ab or abab or
ababab ...

? Optional inclusion:
expr?

matches expr zero times or once.
expr? is equivalent to (expr) | λ
and eliminates the need for an
explicit λ symbol.
[-+]?[0-9]+ defines an optionally
signed integer literal.

118CS 536 Spring 2006
©

• Single match:
The character ". " matches any single
character (other than a newline).

• Start of line:
The character ^ (when used outside a
character class) matches the
beginning of a line.

• End of line:
The character $ matches the end of a
line. Thus,

^A.*e$
matches an entire line that begins
with A and ends with e.

119CS 536 Spring 2006
©

Overlapping Definitions
Regular expressions map overlap
(match the same input sequence).
In the case of overlap, two rules
determine which regular expression is
matched:
• The longest possible match is

performed. JLex automatically buffers
characters while deciding how many
characters can be matched.

• If two expressions match exactly the
same string, the earlier expression (in
the JLex specification) is preferred.
Reserved words, for example, are
often special cases of the pattern
used for identifiers. Their definitions
are therefore placed before the

120CS 536 Spring 2006
©

expression that defines an identifier
token.

Often a “catch all” pattern is placed
at the very end of the regular
expression rules. It is used to catch
characters that don’t match any of
the earlier patterns and hence are
probably erroneous. Recall that ". "
matches any single character (other
than a newline). It is useful in a
catch-all pattern. However, avoid a
pattern like .* which will consume
all characters up to the next newline.
In JLex an unmatched character will
cause a run-time error.

121CS 536 Spring 2006
©

The operators and special symbols
most commonly used in JLex are
summarized below. Note that a
symbol sometimes has one meaning
in a regular expression and an entirely
different meaning in a character class
(i.e., within a pair of brackets). If you
find JLex behaving unexpectedly, it’s
a good idea to check this table to be
sure of how the operators and
symbols you’ve used behave. Ordinary
letters and digits, and symbols not
mentioned (like @) represent
themselves. If you’re not sure if a
character is special or not, you can
always escape it or make it part of a
quoted string.

122CS 536 Spring 2006
©

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

(Matches with) to group
sub-expressions.

Represents
itself.

) Matches with (to group
sub-expressions.

Represents
itself.

[Begins a character class. Represents
itself.

] Represents itself. Ends a charac-
ter class.

{ Matches with } to signal
macro-expansion.

Represents
itself.

} Matches with { to signal
macro-expansion.

Represents
itself.

" Matches with " to delimit
strings
(only \ is special within
strings).

Represents
itself.

\ Escapes individual charac-
ters.
Also used to specify a
character by its octal code.

Escapes individ-
ual characters.
Also used to
specify a char-
acter by its octal
code.

. Matches any one character
except \n.

Represents
itself.

123CS 536 Spring 2006
©

| Alternation (or) operator. Represents
itself.

* Kleene closure operator
(zero or more matches).

Represents
itself.

+ Positive closure operator
(one or more matches).

Represents
itself.

? Optional choice operator
(one or zero matches).

Represents
itself.

/ Context sensitive matching
operator.

Represents
itself.

^ Matches only at beginning
of a line.

Complements
remaining
characters in the
class.

$ Matches only at end of a
line.

Represents
itself.

- Represents itself. Range of char-
acters operator.

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

124CS 536 Spring 2006
©

Potential Problems in Using
JLex

The following differences from
“standard” Lex notation appear in
JLex:
• Escaped characters within quoted

strings are not recognized. Hence
"\n" is not a new line character.
Escaped characters outside of quoted
strings (\n) and escaped characters
within character classes ([\n]) are
OK.

• A blank should not be used within a
character class (i.e., [and]). You
may use \040 (which is the character
code for a blank).

125CS 536 Spring 2006
©

• A doublequote must be escaped
within a character class. Use [\"]
instead of ["] .

• Unprintables are defined to be all
characters before blank as well as the
last ASCII character. These can be
represented as: [\000-\037\177]

126CS 536 Spring 2006
©

JLex Examples
A JLex scanner that looks for five
letter words that begin with “P” and
end with “T”.
This example is in

~cs536-1/public/jlex

127CS 536 Spring 2006
©

The JLex specification file is:
class Token {

String text;
Token(String t){text = t;}

}
%%
Digit=[0-9]
AnyLet=[A-Za-z]
Others=[0-9’&.]
WhiteSp=[\040\n]
// Tell JLex to have yylex() return a
Token
%type Token
// Tell JLex what to return when eof of
file is hit
%eofval{
return new Token(null);
%eofval}
%%
[Pp]{AnyLet}{AnyLet}{AnyLet}[Tt]{WhiteSp}+

{return new Token(yytext());}

({AnyLet}|{Others})+{WhiteSp}+
{/*skip*/}

128CS 536 Spring 2006
©

The Java program that uses the
scanner is:
import java.io.*;

class Main {

public static void main(String args[])
throws java.io.IOException {

Yylex lex = new Yylex(System.in);
Token token = lex.yylex();

while (token.text != null) {
System.out.print("\t"+token.text);
token = lex.yylex(); //get next token

}
}}

129CS 536 Spring 2006
©

In case you care, the words that are
matched include:

Pabst

paint

petit

pilot

pivot

plant

pleat

point

posit

Pratt

print

130CS 536 Spring 2006
©

An example of CSX token
specifications. This example is in

~cs536-1/public/proj2/startup

131CS 536 Spring 2006
©

The JLex specification file is:
import java_cup.runtime.*;

/* Expand this into your solution for
project 2 */

class CSXToken {
int linenum;
int colnum;
CSXToken(int line,int col){
linenum=line;colnum=col;};

}

class CSXIntLitToken extends CSXToken {
int intValue;
CSXIntLitToken(int val,int line,

int col){
super(line,col);intValue=val;};

}

class CSXIdentifierToken extends
CSXToken {
String identifierText;
CSXIdentifierToken(String text,int line,

int col){
super(line,col);identifierText=text;};

}

132CS 536 Spring 2006
©

class CSXCharLitToken extends CSXToken {
char charValue;

CSXCharLitToken(char val,int line,
int col){

super(line,col);charValue=val;};
}

class CSXStringLitToken extends CSXToken
{

String stringText;
CSXStringLitToken(String text,

int line,int col){
super(line,col);
stringText=text; };

}

// This class is used to track line and
column numbers
// Feel free to change to extend it
class Pos {
static int linenum = 1;
/* maintain this as line number current

token was scanned on */
static int colnum = 1;

/* maintain this as column number
current token began at */

static int line = 1;
/* maintain this as line number after

scanning current token */

133CS 536 Spring 2006
©

static int col = 1;
/* maintain this as column number

after scanning current token */
static void setpos() {

//set starting pos for current token
linenum = line;
colnum = col;}

}

%%
Digit=[0-9]

// Tell JLex to have yylex() return a
Symbol, as JavaCUP will require

%type Symbol

// Tell JLex what to return when eof of
file is hit
%eofval{
return new Symbol(sym.EOF,

new CSXToken(0,0));
%eofval}

%%
"+" {Pos.setpos(); Pos.col +=1;

 return new Symbol(sym.PLUS,
new CSXToken(Pos.linenum,

Pos.colnum));}

134CS 536 Spring 2006
©

"!=" {Pos.setpos(); Pos.col +=2;
return new Symbol(sym.NOTEQ,

new CSXToken(Pos.linenum,
Pos.colnum));}

";" {Pos.setpos(); Pos.col +=1;
return new Symbol(sym.SEMI,

new CSXToken(Pos.linenum,
Pos.colnum));}

{Digit}+ {// This def doesn’t check
// for overflow

Pos.setpos();
Pos.col += yytext().length();
return new Symbol(sym.INTLIT,

new CSXIntLitToken(
new Integer(yytext()).intValue(),
Pos.linenum,Pos.colnum));}

\n {Pos.line +=1; Pos.col = 1;}
" " {Pos.col +=1;}

135CS 536 Spring 2006
©

The Java program that uses this
scanner (P2) is:
class P2 {

public static void main(String args[])
throws java.io.IOException {

if (args.length != 1) {
System.out.println(
"Error: Input file must be named on

command line.");
System.exit(-1);

}
java.io.FileInputStream yyin = null;
try {

yyin =
new java.io.FileInputStream(args[0]);

} catch (FileNotFoundException
notFound){

System.out.println(
"Error: unable to open input file.”);

System.exit(-1);
}

// lex is a JLex-generated scanner that
// will read from yyin

Yylex lex = new Yylex(yyin);

136CS 536 Spring 2006
©

System.out.println(
"Begin test of CSX scanner.");

/**********************************
You should enter code here that
thoroughly test your scanner.

Be sure to test extreme cases,
like very long symbols or lines,
illegal tokens, unrepresentable
integers, illegals strings, etc.
The following is only a starting point.

***********************************/
Symbol token = lex.yylex();

while (token.sym != sym.EOF) {
System.out.print(

((CSXToken) token.value).linenum
+ ":"
+ ((CSXToken) token.value).colnum
+ " ");

switch (token.sym) {
case sym.INTLIT:

System.out.println(
"\tinteger literal(" +
((CSXIntLitToken)
token.value).intValue + ")");

break;

137CS 536 Spring 2006
©

 case sym.PLUS:
System.out.println("\t+");
break;

 case sym.NOTEQ:
System.out.println("\t!=");
break;

 default:
throw new RuntimeException();

}

token = lex.yylex(); // get next token
}

System.out.println(
"End test of CSX scanner.");

}}}

