
127CS 536 Spring 2006
©

The JLex specification file is:
class Token {

String text;
Token(String t){text = t;}

}
%%
Digit=[0-9]
AnyLet=[A-Za-z]
Others=[0-9’&.]
WhiteSp=[\040\n]
// Tell JLex to have yylex() return a
Token
%type Token
// Tell JLex what to return when eof of
file is hit
%eofval{
return new Token(null);
%eofval}
%%
[Pp]{AnyLet}{AnyLet}{AnyLet}[Tt]{WhiteSp}+

{return new Token(yytext());}

({AnyLet}|{Others})+{WhiteSp}+
{/*skip*/}

128CS 536 Spring 2006
©

The Java program that uses the
scanner is:
import java.io.*;

class Main {

public static void main(String args[])
throws java.io.IOException {

Yylex lex = new Yylex(System.in);
Token token = lex.yylex();

while (token.text != null) {
System.out.print("\t"+token.text);
token = lex.yylex(); //get next token

}
}}

129CS 536 Spring 2006
©

In case you care, the words that are
matched include:

Pabst

paint

petit

pilot

pivot

plant

pleat

point

posit

Pratt

print

130CS 536 Spring 2006
©

An example of CSX token
specifications. This example is in

~cs536-1/public/proj2/startup

131CS 536 Spring 2006
©

The JLex specification file is:
import java_cup.runtime.*;

/* Expand this into your solution for
project 2 */

class CSXToken {
int linenum;
int colnum;
CSXToken(int line,int col){
linenum=line;colnum=col;};

}

class CSXIntLitToken extends CSXToken {
int intValue;
CSXIntLitToken(int val,int line,

int col){
super(line,col);intValue=val;};

}

class CSXIdentifierToken extends
CSXToken {
String identifierText;
CSXIdentifierToken(String text,int line,

int col){
super(line,col);identifierText=text;};

}

132CS 536 Spring 2006
©

class CSXCharLitToken extends CSXToken {
char charValue;

CSXCharLitToken(char val,int line,
int col){

super(line,col);charValue=val;};
}

class CSXStringLitToken extends CSXToken
{

String stringText;
CSXStringLitToken(String text,

int line,int col){
super(line,col);
stringText=text; };

}

// This class is used to track line and
column numbers
// Feel free to change to extend it
class Pos {
static int linenum = 1;
/* maintain this as line number current

token was scanned on */
static int colnum = 1;

/* maintain this as column number
current token began at */

static int line = 1;
/* maintain this as line number after

scanning current token */

133CS 536 Spring 2006
©

static int col = 1;
/* maintain this as column number

after scanning current token */
static void setpos() {

//set starting pos for current token
linenum = line;
colnum = col;}

}

%%
Digit=[0-9]

// Tell JLex to have yylex() return a
Symbol, as JavaCUP will require

%type Symbol

// Tell JLex what to return when eof of
file is hit
%eofval{
return new Symbol(sym.EOF,

new CSXToken(0,0));
%eofval}

%%
"+" {Pos.setpos(); Pos.col +=1;

 return new Symbol(sym.PLUS,
new CSXToken(Pos.linenum,

Pos.colnum));}

134CS 536 Spring 2006
©

"!=" {Pos.setpos(); Pos.col +=2;
return new Symbol(sym.NOTEQ,

new CSXToken(Pos.linenum,
Pos.colnum));}

";" {Pos.setpos(); Pos.col +=1;
return new Symbol(sym.SEMI,

new CSXToken(Pos.linenum,
Pos.colnum));}

{Digit}+ {// This def doesn’t check
// for overflow

Pos.setpos();
Pos.col += yytext().length();
return new Symbol(sym.INTLIT,

new CSXIntLitToken(
new Integer(yytext()).intValue(),
Pos.linenum,Pos.colnum));}

\n {Pos.line +=1; Pos.col = 1;}
" " {Pos.col +=1;}

135CS 536 Spring 2006
©

The Java program that uses this
scanner (P2) is:
class P2 {

public static void main(String args[])
throws java.io.IOException {

if (args.length != 1) {
System.out.println(
"Error: Input file must be named on

command line.");
System.exit(-1);

}
java.io.FileInputStream yyin = null;
try {

yyin =
new java.io.FileInputStream(args[0]);

} catch (FileNotFoundException
notFound){

System.out.println(
"Error: unable to open input file.”);

System.exit(-1);
}

// lex is a JLex-generated scanner that
// will read from yyin

Yylex lex = new Yylex(yyin);

136CS 536 Spring 2006
©

System.out.println(
"Begin test of CSX scanner.");

/**********************************
You should enter code here that
thoroughly test your scanner.

Be sure to test extreme cases,
like very long symbols or lines,
illegal tokens, unrepresentable
integers, illegals strings, etc.
The following is only a starting point.

***********************************/
Symbol token = lex.yylex();

while (token.sym != sym.EOF) {
System.out.print(

((CSXToken) token.value).linenum
+ ":"
+ ((CSXToken) token.value).colnum
+ " ");

switch (token.sym) {
case sym.INTLIT:

System.out.println(
"\tinteger literal(" +
((CSXIntLitToken)
token.value).intValue + ")");

break;

137CS 536 Spring 2006
©

 case sym.PLUS:
System.out.println("\t+");
break;

 case sym.NOTEQ:
System.out.println("\t!=");
break;

 default:
throw new RuntimeException();

}

token = lex.yylex(); // get next token
}

System.out.println(
"End test of CSX scanner.");

}}}

138CS 536 Spring 2006
©

Other Scanner Issues
We will consider other practical issues
in building real scanners for real
programming languages.
Our finite automaton model
sometimes needs to be augmented.
Moreover, error handling must be
incorporated into any practical
scanner.

139CS 536 Spring 2006
©

Identifiers vs. Reserved Words
Most programming languages contain
reserved words like if , while ,
switch , etc. These tokens look like
ordinary identifiers, but aren’t.
It is up to the scanner to decide if
what looks like an identifier is really a
reserved word. This distinction is vital
as reserved words have different
token codes than identifiers and are
parsed differently.
How can a scanner decide which
tokens are identifiers and which are
reserved words?
• We can scan identifiers and reserved

words using the same pattern, and
then look up the token in a special
“reserved word” table.

140CS 536 Spring 2006
©

• It is known that any regular
expression may be complemented to
obtain all strings not in the original
regular expression. Thus A, the
complement of A, is regular if A is.
Using complementation we can write
a regular expression for nonreserved

identifiers:
Since scanner generators don’t
usually support complementation of
regular expressions, this approach is
more of theoretical than practical
interest.

• We can give distinct regular
expression definitions for each
reserved word, and for identifiers.
Since the definitions overlap (if will
match a reserved word and the
general identifier pattern), we give

ident if while …()

141CS 536 Spring 2006
©

priority to reserved words. Thus a
token is scanned as an identifier if it
matches the identifier pattern and
does not match any reserved word
pattern. This approach is commonly
used in scanner generators like Lex
and JLex.

142CS 536 Spring 2006
©

Converting Token Values
For some tokens, we may need to
convert from string form into
numeric or binary form.
For example, for integers, we need to
transform a string a digits into the
internal (binary) form of integers.
We know the format of the token is
valid (the scanner checked this), but:
• The string may represent an integer

too large to represent in 32 or 64 bit
form.

• Languages like CSX and ML use a
non-standard representation for
negative values (~123 instead of
-123)

143CS 536 Spring 2006
©

We can safely convert from string to
integer form by first converting the
string to double form, checking
against max and min int, and then
converting to int form if the value is
representable.
Thus d = new Double(str) will
create an object d containing the
value of str in double form. If str is
too large or too small to be
represented as a double, plus or minus
infinity is automatically substituted.
d.doubleValue() will give d’s value
as a Java double, which can be
compared against
Integer.MAX_VALUE or
Integer.MIN_VALUE .

144CS 536 Spring 2006
©

If d.doubleValue() represents a
valid integer,
(int) d.doubleValue()
will create the appropriate integer
value.
If a string representation of an
integer begins with a “~” we can strip
the “~”, convert to a double and then
negate the resulting value.

145CS 536 Spring 2006
©

Scanner Termination
A scanner reads input characters and
partitions them into tokens.
What happens when the end of the
input file is reached? It may be useful
to create an Eof pseudo-character
when this occurs. In Java, for
example, InputStream.read() ,
which reads a single byte, returns -1
when end of file is reached. A
constant, EOF, defined as -1 can be
treated as an “extended” ASCII
character. This character then allows
the definition of an Eof token that
can be passed back to the parser.
An Eof token is useful because it
allows the parser to verify that the
logical end of a program corresponds

146CS 536 Spring 2006
©

to its physical end. Most parsers
require an end of file token.
Lex and Jlex automatically create an
Eof token when the scanner they
build tries to scan an EOF character
(or tries to scan when eof() is true).

147CS 536 Spring 2006
©

Multi Character Lookahead
We may allow finite automata to look
beyond the next input character.
This feature is necessary to implement
a scanner for FORTRAN.
In FORTRAN, the statement

DO 10 J = 1,100
specifies a loop, with index J ranging
from 1 to 100 .
The statement

DO 10 J = 1.100
is an assignment to the variable
DO10J. (Blanks are not significant
except in strings.)
A FORTRAN scanner decides whether
the O is the last character of a DO
token only after reading as far as the
comma (or period).

148CS 536 Spring 2006
©

A milder form of extended lookahead
problem occurs in Pascal and Ada.
The token 10.50 is a real literal,
whereas 10..50 is three different
tokens.
We need two-character lookahead
after the 10 prefix to decide whether
we are to return 10 (an integer
literal) or 10.50 (a real literal).

149CS 536 Spring 2006
©

Suppose we use the following FA.

Given 10..100 we scan three
characters and stop in a non-
accepting state.
Whenever we stop reading in a non-
accepting state, we back up along
accepted characters until an
accepting state is found.
Characters we back up over are
rescanned to form later tokens. If no
accepting state is reached during
backup, we have a lexical error.

.D

D D

D

.
.

