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Correct Pascal comments are defined
quite simply:

{ Not( } )* }
To handle comments terminated by
Eof , this error token can be used:

{ Not( } )* Eof
We want to handle comments
unexpectedly closed by a close
comment belonging to another
comment:
{... missing close comment
... { normal comment }...

We will issue a warning (this form of
comment is lexically legal).
Any comment containing an open
comment symbol in its body is most
probably a missing } error.
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We split our legal comment definition
into two token definitions.
The definition that accepts an open
comment in its body causes a warning
message ("Possible unclosed
comment") to be printed.
We now use:
{  Not( { | } )* } and
{  (Not( { | } )* { Not( { | } )* )+ }
The first definition matches correct
comments that do not contain an
open comment in their body.
The second definition matches
correct, but suspect, comments that
contain at least one open comment in
their body.
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Single line comments, found in Java,
CSX and C++, are terminated by Eol.
They can fall prey to a more subtle
error—what if the last line has no Eol
at its end?
The solution?
Another error token for single line
comments:

// Not(Eol) *

This rule will only be used for
comments that don’t end with an Eol,
since scanners always match the
longest rule possible.
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Regular Expressions and Finite
Automata

Regular expressions are fully
equivalent to finite automata.
The main job of a scanner generator
like JLex is to transform a regular
expression definition into an
equivalent finite automaton.
First it transforms a regular
expression into a nondeterministic
finite automaton (NFA).
Unlike an ordinary deterministic finite
automaton, an NFA need not make a
unique (deterministic) choice of a
successor state to visit. For example,
as shown below, an NFA is allowed to
have a state that has two transitions
(arrows) coming out of it, labeled by
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the same symbol. An NFA may also
have transitions labeled with λ.

Transitions are normally labeled with
individual characters in Σ, and
although λ is a string (the string with
no characters in it), it is definitely not
a character. In the above example,
when the automaton is in the state at
the left and the next input character
is a, it may choose to use the

a

a

a

λ
a
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transition labeled a or first follow the
λ transition (you can always find λ
wherever you look for it) and then
follow an a transition. FAs that
contain no λ transitions and that
always have unique successor states
for any symbol are deterministic.
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Building Finite Automata From
Regular Expressions

We make an FA from a regular
expression in two steps:
• Transform the regular expression into

an NFA.

• Transform the NFA into a
deterministic FA.

The first step is easy.
Regular expressions are all built out
of the atomic regular expressions a
(where a is a character in Σ) and λ by
using the three operations
A B and A | B and A*.
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Other operations (like A+) are just
abbreviations for combinations of
these.
NFAs for a and λ are trivial:

a

λ
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Suppose we have NFAs for A and B
and want one for A | B. We construct
the NFA shown below:

The states labeled A and B were the
accepting states of the automata for
A and B; we create a new accepting
state for the combined automaton.
A path through the top automaton
accepts strings in A, and a path
through the bottom automation
accepts strings in B, so the whole
automaton matches A | B .
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As shown below, the construction for
A B  is even easier. The accepting
state of the combined automaton is
the same state that was the accepting
state of B. We must follow a path
through A’s automaton, then through
B’s automaton, so overall A B  is
matched.
We could also just merge the
accepting state of A with the initial
state of B. We chose not to only
because the picture would be more
difficult to draw.

A
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Finally, let’s look at the NFA for A*.
The start state reaches an accepting
state via λ, so λ is accepted.
Alternatively, we can follow a path
through the FA for A one or more
times, so zero or more strings that
belong to A are matched.
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Creating Deterministic
Automata

The transformation from an NFA N to
an equivalent DFA D works by what is
sometimes called the subset
construction.
Each state of D corresponds to a set of
states of N.
The idea is that D will be in state
{x, y, z} after reading a given input
string if and only if N could be in any
one of the states x, y, or z, depending
on the transitions it chooses. Thus D
keeps track of all the possible routes
N might take and runs them
simultaneously.
Because N is a finite automaton, it has
only a finite number of states. The
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number of subsets of N’s states is also
finite, which makes tracking various
sets of states feasible.
An accepting state of D will be any set
containing an accepting state of N,
reflecting the convention that N
accepts if there is any way it could
get to its accepting state by choosing
the “right” transitions.
The start state of D is the set of all
states that N could be in without
reading any input characters—that
is, the set of states reachable from
the start state of N following only λ
transitions. Algorithm close
computes those states that can be
reached following only λ transitions.
Once the start state of D is built, we
begin to create successor states:
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We take each state S of D, and each
character c, and compute S’s
successor under c.
S is identified with some set of N’s
states, {n1, n2,...}.

We find all the possible successor
states to {n1, n2,...} under c,
obtaining a set {m1, m2,...}.

Finally, we compute
T = CLOSE({ m1, m2,...}).
T becomes a state in D, and a
transition from S to T labeled with c
is added to D.
We continue adding states and
transitions to D until all possible
successors to existing states are
added.
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Because each state corresponds to a
finite subset of N’s states, the process
of adding new states to D must
eventually terminate.
Here is the algorithm for λ-closure,
called close . It starts with a set of
NFA states, S, and adds to S all states
reachable from S using only λ
transitions.
void close(NFASet S) {

while (x in S and x →λ
y

and y notin S) {

S = S U {y}

}}

Using close , we can define the
construction of a DFA, D, from an
NFA, N:
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DFA MakeDeterministic(NFA N) {
DFA D ; NFASet  T
D.StartState = { N.StartState }
close(D.StartState)
D.States = { D.StartState }
while (states or transitions can be

added to D) {
Choose any state S in D.States

and any character c in Alphabet

T = {y in N.States such that

x →c
y for some x in S}

close(T);

if (T notin D. States) {
D.States = D.States U {T}

D.Transitions =

D.Transitions U

{the transition S →c
T}

 }  }
D.AcceptingStates =

{ S in D.States such that an
accepting state of N in S}

}
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Example
To see how the subset construction
operates, consider the following NFA:

We start with state 1, the start state of
N, and add state 2 its λ-successor.
D’s start state is {1,2}.
Under a, {1,2}’s successor is {3,4,5}.
State 1 has itself as a successor under
b. When state 1’s λ-successor, 2, is
included, {1,2}’s successor is {1,2}.

aλ
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{3,4,5}’s successors under a and b are
{5} and {4,5}.
{4,5}’s successor under b is {5}.
Accepting states of D are those state
sets that contain N’s accepting state
which is 5.
The resulting DFA is:
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