
171CS 536 Spring 2006
©

Creating Deterministic
Automata

The transformation from an NFA N to
an equivalent DFA D works by what is
sometimes called the subset
construction.
Each state of D corresponds to a set of
states of N.
The idea is that D will be in state
{x, y, z} after reading a given input
string if and only if N could be in any
one of the states x, y, or z, depending
on the transitions it chooses. Thus D
keeps track of all the possible routes
N might take and runs them
simultaneously.
Because N is a finite automaton, it has
only a finite number of states. The

172CS 536 Spring 2006
©

number of subsets of N’s states is also
finite, which makes tracking various
sets of states feasible.
An accepting state of D will be any set
containing an accepting state of N,
reflecting the convention that N
accepts if there is any way it could
get to its accepting state by choosing
the “right” transitions.
The start state of D is the set of all
states that N could be in without
reading any input characters—that
is, the set of states reachable from
the start state of N following only λ
transitions. Algorithm close
computes those states that can be
reached following only λ transitions.
Once the start state of D is built, we
begin to create successor states:

173CS 536 Spring 2006
©

We take each state S of D, and each
character c, and compute S’s
successor under c.
S is identified with some set of N’s
states, {n1, n2,...}.

We find all the possible successor
states to {n1, n2,...} under c,
obtaining a set {m1, m2,...}.

Finally, we compute
T = CLOSE({ m1, m2,...}).
T becomes a state in D, and a
transition from S to T labeled with c
is added to D.
We continue adding states and
transitions to D until all possible
successors to existing states are
added.

174CS 536 Spring 2006
©

Because each state corresponds to a
finite subset of N’s states, the process
of adding new states to D must
eventually terminate.
Here is the algorithm for λ-closure,
called close . It starts with a set of
NFA states, S, and adds to S all states
reachable from S using only λ
transitions.
void close(NFASet S) {

while (x in S and x →λ
y

and y notin S) {

S = S U {y}

}}

Using close , we can define the
construction of a DFA, D, from an
NFA, N:

175CS 536 Spring 2006
©

DFA MakeDeterministic(NFA N) {
DFA D ; NFASet T
D.StartState = { N.StartState }
close(D.StartState)
D.States = { D.StartState }
while (states or transitions can be

added to D) {
Choose any state S in D.States

and any character c in Alphabet

T = {y in N.States such that

x →c
y for some x in S}

close(T);

if (T notin D. States) {
D.States = D.States U {T}

D.Transitions =

D.Transitions U

{the transition S →c
T}

 } }
D.AcceptingStates =

{ S in D.States such that an
accepting state of N in S}

}

176CS 536 Spring 2006
©

Example
To see how the subset construction
operates, consider the following NFA:

We start with state 1, the start state of
N, and add state 2 its λ-successor.
D’s start state is {1,2}.
Under a, {1,2}’s successor is {3,4,5}.
State 1 has itself as a successor under
b. When state 1’s λ-successor, 2, is
included, {1,2}’s successor is {1,2}.

aλ
1 2

3 4

5

b

a

b

a

a | b

177CS 536 Spring 2006
©

{3,4,5}’s successors under a and b are
{5} and {4,5}.
{4,5}’s successor under b is {5}.
Accepting states of D are those state
sets that contain N’s accepting state
which is 5.
The resulting DFA is:

b
1,2

5

4,5

b

a

a | b

a
3,4,5

5

178CS 536 Spring 2006
©

It is not too difficult to establish that
the DFA constructed by
MakeDeterministic is equivalent to the
original NFA.
The idea is that each path to an
accepting state in the original NFA has
a corresponding path in the DFA.
Similarly, all paths through the
constructed DFA correspond to paths in
the original NFA.
What is less obvious is the fact that the
DFA that is built can sometimes be
much larger than the original NFA.
States of the DFA are identified with
sets of NFA states.

If the NFA has n states, there are 2n

distinct sets of NFA states, and hence
the DFA may have as many as 2n

states. Certain NFAs actually exhibit

179CS 536 Spring 2006
©

this exponential blowup in size when
made deterministic.
Fortunately, the NFAs built from the
kind of regular expressions used to
specify programming language tokens
do not exhibit this problem when they
are made deterministic.
As a rule, DFAs used for scanning are
simple and compact.
If creating a DFA is impractical
(because of size or speed-of-generation
concerns), we can scan using an NFA.
Each possible path through an NFA is
tracked, and reachable accepting states
are identified. Scanning is slower using
this approach, so it is used only when
construction of a DFA is not practical.

180CS 536 Spring 2006
©

Optimizing Finite Automata
We can improve the DFA created by
MakeDeterministic .
Sometimes a DFA will have more
states than necessary. For every DFA
there is a unique smallest equivalent
DFA (fewest states possible).
Some DFA’s contain unreachable
states that cannot be reached from
the start state.
Other DFA’s may contain dead states
that cannot reach any accepting
state.
It is clear that neither unreachable
states nor dead states can participate
in scanning any valid token. We
therefore eliminate all such states as
part of our optimization process.

181CS 536 Spring 2006
©

We optimize a DFA by merging
together states we know to be
equivalent.
For example, two accepting states
that have no transitions at all out of
them are equivalent.
Why? Because they behave exactly
the same way—they accept the string
read so far, but will accept no
additional characters.
If two states, s1 and s2, are
equivalent, then all transitions to s2
can be replaced with transitions to
s1. In effect, the two states are
merged together into one common
state.

182CS 536 Spring 2006
©

How do we decide what states to
merge together?
We take a greedy approach and try
the most optimistic merger of states.
By definition, accepting and non-
accepting states are distinct, so we
initially try to create only two states:
one representing the merger of all
accepting states and the other
representing the merger of all non-
accepting states.
This merger into only two states is
almost certainly too optimistic. In
particular, all the constituents of a
merged state must agree on the same
transition for each possible character.
That is, for character c all the merged
states must have no successor under c
or they must all go to a single
(possibly merged) state.

183CS 536 Spring 2006
©

If all constituents of a merged state
do not agree on the transition to
follow for some character, the merged
state is split into two or more smaller
states that do agree.
As an example, assume we start with
the following automaton:

Initially we have a merged non-
accepting state {1,2,3,5,6} and a
merged accepting state {4,7}.
A merger is legal if and only if all
constituent states agree on the same
successor state for all characters. For
example, states 3 and 6 would go to

a

b

b c

c
d

1 2 3 4

5 6 7

184CS 536 Spring 2006
©

an accepting state given character c;
states 1, 2, 5 would not, so a split
must occur.
We will add an error state sE to the
original DFA that is the successor
state under any illegal character.
(Thus reaching sE becomes equivalent
to detecting an illegal token.) sE is
not a real state; rather it allows us to
assume every state has a successor
under every character. sE is never
merged with any real state.
Algorithm Split , shown below, splits
merged states whose constituents do
not agree on a common successor
state for all characters. When Split
terminates, we know that the states
that remain merged are equivalent in

185CS 536 Spring 2006
©

that they always agree on common
successors.
Split(FASet StateSet) {

repeat
for(each merged state

S in StateSet) {
Let S corresponds to {s 1, ...,s n}

for(each char c in Alphabet){
Let t 1, ...,t n be the successor

states to s 1, ...,s n under c
if(t 1, ...,t n do not all belong

to the same merged state){
Split S into two or more
new states such that s i and
sj remain in the same
merged state if and only if
t i and t j are in the same
merged state}

}
until no more splits are possible

}

186CS 536 Spring 2006
©

Returning to our example, we initially
have states {1,2,3,5,6} and {4,7}.
Invoking Split , we first observe that
states 3 and 6 have a common
successor under c, and states 1, 2,
and 5 have no successor under c (or,
equivalently, have the error state sE).

This forces a split, yielding {1,2,5},
{3,6} and {4,7}.
Now, for character b states 2 and 5
would go to the merged state {3,6},
but state 1 would not, so another
split occurs.
We now have: {1}, {2,5}, {3,6} and
{4,7}.
At this point we are done, as all
constituents of merged states agree
on the same successor for each input
symbol.

187CS 536 Spring 2006
©

Once Split is executed, we are
essentially done.
Transitions between merged states are
the same as the transitions between
states in the original DFA.
Thus, if there was a transition
between state si and sj under
character c, there is now a transition
under c from the merged state
containing si to the merged state
containing sj. The start state is that
merged state containing the original
start state.
Accepting states are those merged
states containing accepting states
(recall that accepting and non-
accepting states are never merged).

188CS 536 Spring 2006
©

Returning to our example, the
minimum state automaton we obtain
is

a | d b c
1 2,5 3,6 4,7

189CS 536 Spring 2006
©

Properties of Regular
Expressions and Finite
Automata
• Some token patterns can’t be defined as

regular expressions or finite automata.
Consider the set of balanced brackets of
the form

[[[…]]] .
This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is not regular.
No finite automaton that recognizes
exactly this set can exist.
Why?
Consider the inputs [, [[, [[[, ...
For two different counts (call them i and
j). [i and [j must reach the same state of
any given FA! (Why)

190CS 536 Spring 2006
©

Once that happens, we know that if [i]i is
accepted (as it should be), the [j]i will
also be accepted (and that should not
happen).

• R = V* - R is regular if R is.
Why?
Build a finite automaton for R. Be
careful to include transitions to an “error
state” sE for illegal characters.
Now invert final and non-final states.
What was previously accepted is now
rejected, and what was rejected is now
accepted. That is, R is accepted by the
modified automaton.

191CS 536 Spring 2006
©

• Not all subsets of a regular set are
themselves regular. The regular
expression [+]+ has a subset that isn’t
regular. (What is that subset??)

• Let R be a set of strings. Rrev is defined
to be the strings in R, in reversed
(backward) character order.
Thus if R = {abc, def}
then Rrev = {cba, fed}.
If R is regular, then Rrev is too.
Why?
Build a finite automaton for R. Make
sure the automaton has only one final
state. Now reverse the direction of all
transitions, and interchange the start
and final states. What does the modified
automation accept?

192CS 536 Spring 2006
©

• If R1 and R2 are both regular, then
R1 ∩ R2 is also regular. We can show this
two different ways:

1. Build two finite automata, one for
R1 and one for R2. Pair together
states of the two automata to
match R1 and R2 simultaneously.
The paired-state automaton accepts
only if both R1 and R2 would, so
R1 ∩ R2 is matched.

2. We can use the fact that R1 ∩ R2 is

= We already know union
and complementation are regular.

R1 R2∪

