
194CS 536 Spring 2006
©

Context Free Grammars
A context-free grammar (CFG) is
defined as:
• A finite terminal set Vt;

these are the tokens produced by the
scanner.

• A set of intermediate symbols, called
non-terminals, Vn.

• A start symbol, a designated non-
terminal, that starts all derivations.

• A set of productions (sometimes
called rewriting rules) of the form
A → X1 ... Xm

X1 to Xm may be any combination of
terminals and non-terminals.
If m =0 we have A → λ
which is a valid production.

195CS 536 Spring 2006
©

Example
Prog → { Stmts }
Stmts → Stmts ; Stmt
Stmts → Stmt
Stmt → id = Expr
Expr → id
Expr → Expr + id

196CS 536 Spring 2006
©

Often more than one production shares
the same left-hand side.
Rather than repeat the left hand side,
an “or notation” is used:

Prog → { Stmts }
Stmts → Stmts ; Stmt

| Stmt
Stmt → id = Expr
Expr → id

| Expr + id

197CS 536 Spring 2006
©

Derivations
Starting with the start symbol, non-
terminals are rewritten using
productions until only terminals
remain.
Any terminal sequence that can be
generated in this manner is
syntactically valid.
If a terminal sequence can’t be
generated using the productions of the
grammar it is invalid (has syntax
errors).
The set of strings derivable from the
start symbol is the language of the
grammar (sometimes denoted L(G)).

198CS 536 Spring 2006
©

For example, starting at Prog we
generate a terminal sequence, by
repeatedly applying productions:
Prog
{ Stmts }
{ Stmts ; Stmt }
{ Stmt ; Stmt }
{ id = Expr ; Stmt }
{ id = id ; Stmt }
{ id = id ; id = Expr }
{ id = id ; id = Expr + id}
{ id = id ; id = id + id}

199CS 536 Spring 2006
©

Parse Trees
To illustrate a derivation, we can draw
a derivation tree (also called a parse
tree):

Prog

{ Stmts }

 Stmts ; Stmt

 Stmt

 id = Expr

 id

 id = Expr

 Expr + id

 id

200CS 536 Spring 2006
©

An abstract syntax tree (AST) shows
essential structure but eliminates
unnecessary delimiters and
intermediate symbols:

Prog

Stmts

 Stmts =

=

 id id

 id +

 id id

201CS 536 Spring 2006
©

If A → γ is a production then
αAβ ⇒ αγβ
where ⇒ denotes a one step
derivation (using production A → γ).

We extend ⇒ to ⇒+ (derives in one
or more steps), and ⇒* (derives in
zero or more steps).
We can show our earlier derivation as
Prog ⇒
{ Stmts } ⇒
{ Stmts ; Stmt } ⇒
{ Stmt ; Stmt } ⇒
{ id = Expr ; Stmt } ⇒
{ id = id ; Stmt } ⇒
{ id = id ; id = Expr } ⇒
{ id = id ; id = Expr + id} ⇒
{ id = id ; id = id + id}

202CS 536 Spring 2006
©

Prog ⇒+ { id = id ; id = id + id}

When deriving a token sequence, if
more than one non-terminal is
present, we have a choice of which to
expand next.
We must specify, at each step, which
non-terminal is expanded, and what
production is applied.
For simplicity we adopt a convention
on what non-terminal is expanded at
each step.
We can choose the leftmost possible
non-terminal at each step.
A derivation that follows this rule is a
leftmost derivation.
If we know a derivation is leftmost,
we need only specify what

203CS 536 Spring 2006
©

productions are used; the choice of
non-terminal is always fixed.
To denote derivations that are
leftmost,
we use ⇒L, ⇒+

L , and ⇒*
L

The production sequence discovered
by a large class of parsers (the top-
down parsers) is a leftmost
derivation, hence these parsers
produce a leftmost parse.
Prog ⇒L

{ Stmts } ⇒L

{ Stmts ; Stmt } ⇒L

{ Stmt ; Stmt } ⇒L

{ id = Expr ; Stmt } ⇒L

{ id = id ; Stmt } ⇒L

204CS 536 Spring 2006
©

{ id = id ; id = Expr } ⇒L

{ id = id ; id = Expr + id} ⇒L

{ id = id ; id = id + id}

Prog ⇒L
+ { id = id ; id = id + id}

205CS 536 Spring 2006
©

Rightmost Derivations
An alternative to a leftmost
derivation is a rightmost derivation,
in which the rightmost possible non-
terminal is always expanded.
This derivation sequence may seem
less intuitive given our normal left-
to-right bias, but it corresponds to an
important class of parsers (the
bottom-up parsers, including CUP).
As a bottom-up parser discovers the
productions used to derive a token
sequence, it discovers a rightmost
derivation, but in reverse order.
The last production applied in a
rightmost derivation is the first that
is discovered, while the first
production used, involving the start
symbol, is the last to be discovered.

206CS 536 Spring 2006
©

The sequence of productions
recognized by a bottom-up parser is a
rightmost parse.
It is the exact reverse of the
production sequence that represents a
rightmost derivation.
For derivations that are rightmost, we
use the notation ⇒R, ⇒+

R , and ⇒*
R

Prog ⇒R

{ Stmts } ⇒R

{ Stmts ; Stmt } ⇒R

{ Stmts ; id = Expr } ⇒R

{ Stmts ; id = Expr + id } ⇒R

{ Stmts ; id = id + id } ⇒R

{ Stmt ; id = id + id } ⇒R

{ id = Expr ; id = id + id } ⇒R

207CS 536 Spring 2006
©

{ id = id ; id = id + id}

Prog ⇒+ { id = id ; id = id + id}

You can derive the same set of tokens
using leftmost and rightmost
derivations; the only difference is the
order in which productions are used.

208CS 536 Spring 2006
©

Ambiguous Grammars
Some grammars allow more than one
parse tree for the same token
sequence. Such grammars are
ambiguous. Because compilers use
syntactic structure to drive
translation, ambiguity is undesirable—
it may lead to an unexpected
translation.
Consider
E → E - E

| id
When parsing the input a-b-c (where
a, b and c are scanned as identifiers)

209CS 536 Spring 2006
©

we can build the following two parse
trees:

The effect is to parse a-b-c as either
(a-b)-c or a-(b-c). These two
groupings are certainly not
equivalent.
Ambiguous grammars are usually
voided in building compilers; the
tools we use, like Yacc and CUP,
strongly prefer unambiguous
grammars.

E
E - E

E - E

id id id

E
E - E

E - E

id id id

210CS 536 Spring 2006
©

To correct this ambiguity, we can use
E → E - id

| id
Now a-b-c can only be parsed as:

E
E -

E -

id id id

211CS 536 Spring 2006
©

Operator Precedence
Most programming languages have
operator precedence rules that state
the order in which operators are
applied (in the absence of explicit
parentheses). Thus in C and Java and
CSX, a+b*c means compute b*c, then
add in a.
These operators precedence rules can
be incorporated directly into a CFG.
Consider
E → E + T

| T
T → T * P

| P
P → id

| (E)

212CS 536 Spring 2006
©

Does a+b*c mean (a+b)*c or a+(b*c)?
The grammar tells us! Look at the
derivation tree:

The other grouping can’t be obtained
unless explicit parentheses are used.
(Why?)

E

E + T

T T * P

P P

id id id

