
221CS 536 Spring 2006
©

Example
Let’s look at the CUP specification for
CSX-lite. Recall its CFG is
program → { stmts }
stmts → stmt stmts

| λ
stmt → id = expr ;

| if (expr) stmt
expr → expr + id

| expr - id
| id

222CS 536 Spring 2006
©

The corresponding CUP specification
is:
/***
This Is A Java CUP Specification For
CSX-lite, a Small Subset
of The CSX Language, Used In Cs536
 ***/

/* Preliminaries to set up and use
the scanner. */

import java_cup.runtime.*;
parser code {:
 public void syntax_error

(Symbol cur_token){
 report_error(

“CSX syntax error at line “+
String.valueOf(((CSXToken)

cur_token.value).linenum),
null);}

:};

init with {: :};
scan with {:

return Scanner.next_token();
:};

223CS 536 Spring 2006
©

/* Terminals (tokens returned by the
scanner). */
terminal CSXIdentifierToken
IDENTIFIER;
terminal CSXToken SEMI, LPAREN,
RPAREN, ASG, LBRACE, RBRACE;
terminal CSXToken PLUS, MINUS,
rw_IF;

/* Non terminals */
non terminal csxLiteNode prog;
non terminal stmtsNode stmts;
non terminal stmtNode stmt;
non terminal exprNode exp;
non terminal nameNode ident;

start with prog;

prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

224CS 536 Spring 2006
©

stmts::= stmt:s1 stmts:s2
 {: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

 :}
|
 {: RESULT= stmtsNode.NULL; :}
;
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

| rw_IF:i LPAREN exp:e RPAREN stmt:s

 {: RESULT=new ifThenNode(e,s,
 stmtNode.NULL,

i.linenum,i.colnum); :}
;
exp::=

exp:leftval PLUS:op ident:rightval
{: RESULT=new binaryOpNode(leftval,

sym.PLUS, rightval,
op.linenum,op.colnum); :}

225CS 536 Spring 2006
©

| exp:leftval MINUS:op ident:rightval

{: RESULT=new binaryOpNode(leftval,
sym.MINUS,rightval,
op.linenum,op.colnum); :}

| ident:i
 {: RESULT = i; :}
;
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(

new identNode(i.identifierText,
 i.linenum,i.colnum),

exprNode.NULL,
i.linenum,i.colnum); :}

;

226CS 536 Spring 2006
©

Let’s parse
{ a = b ; }

First, a is parsed using
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(

new identNode(i.identifierText,
 i.linenum,i.colnum),

exprNode.NULL,
i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
a

227CS 536 Spring 2006
©

Next, a is parsed using
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(

new identNode(i.identifierText,
 i.linenum,i.colnum),

exprNode.NULL,
i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
b

228CS 536 Spring 2006
©

Then b’s subtree is recognized as an
exp:
| ident:i
 {: RESULT = i; :}

Now the assignment statement is
recognized:
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

We build

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

229CS 536 Spring 2006
©

The stmts → λ production is
matched (indicating that there are no
more statements in the program).
CUP matches
stmts::=
 {: RESULT= stmtsNode.NULL; :}

and we build

Next,
stmts → stmt stmts
is matched using
stmts::= stmt:s1 stmts:s2
 {: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

 :}

nullStmtsNode

230CS 536 Spring 2006
©

This builds

As the last step of the parse, the
parser matches
program → { stmts }
using the CUP rule
prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

231CS 536 Spring 2006
©

The final AST reurned by the parser is

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

csxLiteNode

232CS 536 Spring 2006
©

Errors in Context-Free
Grammars

Context-free grammars can contain
errors, just as programs do. Some
errors are easy to detect and fix;
others are more subtle.
In context-free grammars we start
with the start symbol, and apply
productions until a terminal string is
produced.
Some context-free grammars may
contain useless non-terminals.
Non-terminals that are unreachable
(from the start symbol) or that derive
no terminal string are considered
useless.
Useless non-terminals (and
productions that involve them) can be

233CS 536 Spring 2006
©

safely removed from a grammar
without changing the language
defined by the grammar.
A grammar containing useless non-
terminals is said to be non-reduced.
After useless non-terminals are
removed, the grammar is reduced.
Consider
S → A B

| x
B → b
A → a A
C → d

Which non-terminals are
unreachable? Which derive no
terminal string?

234CS 536 Spring 2006
©

Finding Useless Non-terminals
To find non-terminals that can derive
one or more terminal strings, we’ll use
a marking algorithm.
We iteratively mark terminals that
can derive a string of terminals, until
no more non-terminals can be
marked. Unmarked non-terminals are
useless.
(1) Mark all terminal symbols
(2) Repeat

If all symbols on the righthand
side of a production
are marked

Then mark the lefthand side
Until no more non-terminals

can be marked

235CS 536 Spring 2006
©

We can use a similar marking
algorithm to determine which non-
terminals can be reached from the
start symbol:
(1) Mark the Start Symbol
(2) Repeat

If the lefthand side of a
production is marked

Then mark all non-terminals
in the righthand side

Until no more non-terminals
can be marked

236CS 536 Spring 2006
©

λ Derivations
When parsing, we’ll sometimes need
to know which non-terminals can
derive λ. (λ is “invisible” and hence
tricky to parse).
We can use the following marking
algorithm to decide which non-
terminals derive λ
(1) For each production A → λ

mark A
(2) Repeat

If the entire righthand
side of a production
is marked

Then mark the lefthand side
Until no more non-terminals

can be marked

237CS 536 Spring 2006
©

As an example consider
S → A B C
A → a
B → C D
D → d

| λ
C → c

| λ

238CS 536 Spring 2006
©

Recall that compilers prefer an
unambiguous grammar because a
unique parse tree structure can be
guaranteed for all inputs.
Hence a unique translation, guided by
the parse tree structure, will be
obtained.
We would like an algorithm that
checks if a grammar is ambiguous.
Unfortunately, it is undecidable
whether a given CFG is ambiguous, so
such an algorithm is impossible to
create.
Fortunately for certain grammar
classes, including those for which we
can generate parsers, we can prove
included grammars are unambiguous.

239CS 536 Spring 2006
©

Potentially, the most serious flaw that
a grammar might have is that it
generates the “wrong language."
This is a subtle point as a grammar
serves as the definition of a language.
For established languages (like C or
Java) there is usually a suite of
programs created to test and validate
new compilers. An incorrect grammar
will almost certainly lead to incorrect
compilations of test programs, which
can be automatically recognized.
For new languages, initial
implementors must thoroughly test
the parser to verify that inputs are
scanned and parsed as expected.

