
250CS 536 Spring 2006
©

Prediction
We want to avoid trying productions
that can’t possibly work.
For example, if the current token to
be parsed is an identifier, it is useless
to try a production that begins with
an integer literal.
Before we try a production, we’ll
consider the set of terminals it might
initially produce. If the current token
is in this set, we’ll try the production.
If it isn’t, there is no way the
production being considered could be
part of the parse, so we’ll ignore it.
A predict function will tell us the set
of tokens that might be initially
generated from any production.

251CS 536 Spring 2006
©

For A → X1...Xn, Predict(A → X1...Xn)
= Set of all initial (first) tokens
derivable from A → X1...Xn =
{a in Vt | A → X1...Xn ⇒* a...}

For example, given
Stmt → Label id = Expr ;

| Label if Expr then Stmt ;
| Label read (IdList) ;
| Label id (Args) ;

Label → intlit :
| λ

Production Predict Set

Stmt → Label id = Expr ; {id, intlit}

Stmt → Label if Expr then Stmt ; {if, intlit}

Stmt → Label read (IdList) ; {read, intlit}

Stmt → Label id (Args) ; {id, intlit}

252CS 536 Spring 2006
©

We now will match a production p
only if the next unmatched token is
in p’s predict set. We’ll avoid trying
productions that clearly won’t work,
so parsing will be faster.
But what is the predict set of a
λ-production?
It can’t be what’s generated by λ
(which is nothing!), so we’ll define it
as the tokens that can follow the use
of a λ-production.
That is, Predict(A → λ) = Follow(A)
where (by definition)

Follow(A) = {a in Vt | S ⇒+ ...Aa...}

In our example,
Follow(Label → λ) ={ id, if, read }

253CS 536 Spring 2006
©

(since these terminals can
immediately follow uses of Label in
the given productions).
Now let’s parse
id (intlit) ;

Our start symbol is Stmt and the
initial token is id.
id can predict Stmt → Label id = Expr ;

id then predicts Label → λ
The id is matched, but “(“ doesn’t
match “=” so be backup and try a
different production for Stmt.
id also predicts Stmt → Label id (Args) ;

Again, Label → λ is predicted and
used, and the input tokens can match
the rest of the remaining production.
We had only one misprediction, which
is better than before.

254CS 536 Spring 2006
©

Now we’ll rewrite the productions a
bit to make predictions easier.
We remove the Label prefix from all
the statement productions (now intlit
won’t predict all four productions).
We now have
Stmt → Label BasicStmt
BasicStmt → id = Expr ;

| if Expr then Stmt ;
| read (IdList) ;
| id (Args) ;

Label → intlit :
| λ

Now id predicts two different
BasicStmt productions. If we
rewrite these two productions into
BasicStmt → id StmtSuffix
StmtSuffix → = Expr ;

| (Args) ;

255CS 536 Spring 2006
©

we no longer have any doubt over
which production id predicts.
We now have

This grammar generates the same
statements as our original grammar
did, but now prediction never fails!

Production Predict Set

Stmt → Label BasicStmt Not needed!

BasicStmt → id StmtSuffix {id}

BasicStmt → if Expr then Stmt ; {if}

BasicStmt → read (IdList) ; {read}

StmtSuffix → (Args) ; { (}

StmtSuffix → = Expr ; { = }

Label → intlit : {intlit}

Label → λ {if, id, read}

256CS 536 Spring 2006
©

Whenever we must decide what
production to use, the predict sets for
productions with the same lefthand
side are always disjoint.
Any input token will predict a unique
production or no production at all
(indicating a syntax error).
If we never mispredict a production,
we never backup, so parsing will be
fast and absolutely accurate!

257CS 536 Spring 2006
©

Reading Assignment
Get and read Chapter 5 of
Crafting a Compiler featuring Java.
(Available from DoIt Tech Store)

258CS 536 Spring 2006
©

LL(1) Grammars
A context-free grammar whose
Predict sets are always disjoint (for
the same non-terminal) is said to be
LL(1).
LL(1) grammars are ideally suited for
top-down parsing because it is always
possible to correctly predict the
expansion of any non-terminal. No
backup is ever needed.
Formally, let
First(X1...Xn) =
{a in Vt | A → X1...Xn ⇒* a...}

Follow(A) = {a in Vt | S ⇒+ ...Aa...}

259CS 536 Spring 2006
©

Predict(A → X1...Xn) =
If X1...Xn⇒* λ
Then First(X1...Xn) U Follow(A)
Else First(X1...Xn)

If some CFG, G, has the property that
for all pairs of distinct productions
with the same lefthand side,
A → X1...Xn and A → Y1...Ym
it is the case that
Predict(A → X1...Xn) ∩
Predict(A → Y1...Ym) = φ
then G is LL(1).
LL(1) grammars are easy to parse in a
top-down manner since predictions
are always correct.

260CS 536 Spring 2006
©

Example

Since the predict sets of both B
productions and both D productions
are disjoint, this grammar is LL(1).

Production Predict Set

S → A a {b,d,a}

A → B D {b, d, a}

B → b { b }

B → λ {d, a}

D → d { d }

D → λ { a }

261CS 536 Spring 2006
©

Recursive Descent Parsers
An early implementation of top-down
(LL(1)) parsing was recursive descent.
A parser was organized as a set of
parsing procedures, one for each non-
terminal. Each parsing procedure was
responsible for parsing a sequence of
tokens derivable from its non-
terminal.
For example, a parsing procedure, A,
when called, would call the scanner
and match a token sequence derivable
from A.
Starting with the start symbol’s
parsing procedure, we would then
match the entire input, which must
be derivable from the start symbol.

262CS 536 Spring 2006
©

This approach is called recursive
descent because the parsing
procedures were typically recursive,
and they descended down the input’s
parse tree (as top-down parsers
always do).

263CS 536 Spring 2006
©

Building A Recursive Descent
Parser

We start with a procedure Match ,
that matches the current input token
against a predicted token:
void Match(Terminal a) {

if (a == currentToken)
currentToken = Scanner();

else SyntaxErrror();}

To build a parsing procedure for a
non-terminal A, we look at all
productions with A on the lefthand
side:
A → X1...Xn | A → Y1...Ym | ...

We use predict sets to decide which
production to match (LL(1) grammars
always have disjoint predict sets).

264CS 536 Spring 2006
©

We match a production’s righthand
side by calling Match to match
terminals, and calling parsing
procedures to match non-terminals.
The general form of a parsing
procedure for
A → X1...Xn | A → Y1...Ym | ...

is
void A() {

if (currentToken in Predict(A →X1...Xn))
for(i=1;i<=n;i++)

if (X[i] is a terminal)
Match(X[i]);

else X[i]();
else

if (currentToken in Predict(A →Y1...Ym))
for(i=1;i<=m;i++)

if (Y[i] is a terminal)
Match(Y[i]);

else Y[i]();
else

 // Handle other A →... productions
else // No production predicted

SyntaxError();
}

265CS 536 Spring 2006
©

Usually this general form isn’t used.
Instead, each production is “macro-
expanded” into a sequence of Match
and parsing procedure calls.

266CS 536 Spring 2006
©

Example: CSX-Lite

Production Predict Set

Prog → { Stmts } Eof {

Stmts → Stmt Stmts id if

Stmts → λ }

Stmt → id = Expr ; id

Stmt → if (Expr) Stmt if

Expr → id Etail id

Etail → + Expr +

Etail → - Expr -

Etail → λ) ;

267CS 536 Spring 2006
©

CSX-Lite Parsing Procedures
void Prog() {

Match("{");
Stmts();
Match("}");
Match(Eof);

}

void Stmts() {
if (currentToken == id ||

currentToken == if){
Stmt();
Stmts();

} else {
/* null */

}}

268CS 536 Spring 2006
©

void Stmt() {
if (currentToken == id){

Match(id);
Match("=");
Expr();
Match(";");

} else {
Match(if);
Match("(");
Expr();
Match(")");
Stmt();

}}

void Expr() {
Match(id);
Etail();

}

void Etail() {
if (currentToken == "+") {

Match("+");
Expr();

} else if (currentToken == "-"){
 Match("-");

Expr();
} else {

/* null */
}}

269CS 536 Spring 2006
©

Let’s use recursive descent to parse
{ a = b + c; } Eof

We start by calling Prog() since
this represents the start symbol.

Calls Pending Remaining Input

Prog() { a = b + c; } Eof

Match("{");
Stmts();
Match("}");
Match(Eof);

{ a = b + c; } Eof

Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Stmt();
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

270CS 536 Spring 2006
©

Match(id);
Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 = b + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Calls Pending Remaining Input

271CS 536 Spring 2006
©

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Match("+");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Calls Pending Remaining Input

272CS 536 Spring 2006
©

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

/* null */
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Stmts();
Match("}");
Match(Eof);

} Eof

/* null */
Match("}");
Match(Eof);

} Eof

Match("}");
Match(Eof);

} Eof

Calls Pending Remaining Input

273CS 536 Spring 2006
©

Match(Eof); Eof

Done! All input matched

Calls Pending Remaining Input

