
326CS 536 Spring 2006
©

Error Detection in LALR
Parsers

In bottom-up, LALR parsers syntax
errors are discovered when a blank
(error) entry is fetched from the
parser action table.
Let’s again trace how the following
illegal CSX-lite program is parsed:
{ b + c = a; } Eof

Parse
Stack Top State Action Remaining Input

0 Prog → • { Stmts } Eof Shift { b + c = a; } Eof

327CS 536 Spring 2006
©

1

0

Prog → { • Stmts } Eof
Stmts → • Stmt Stmts
Stmts → λ •

Stmt → • id = Expr ;
Stmt → • if (Expr)

Shift b + c = a; } Eof

4

1

0

Stmt → id • = Expr ; Error
(blank)

 + c = a; } Eof

Parse
Stack Top State Action Remaining Input

328CS 536 Spring 2006
©

LALR is More Powerful
Essentially all LL(1) grammars are
LALR(1) plus many more. Grammar
constructs that confuse LL(1) are
readily handled.
• Common prefixes are no problem.

Since sets of configurations are
tracked, more than one prefix can be
followed. For example, in

Stmt → id = Expr ;
Stmt → id (Args) ;

after we match an id we have

Stmt → id • = Expr ;
Stmt → id • (Args) ;

The next token will tell us which
production to use.

329CS 536 Spring 2006
©

• Left recursion is also not a problem.
Since sets of configurations are
tracked, we can follow a left-
recursive production and all others it
might use. For example, in

Expr → • Expr + id
Expr → • id

we can first match an id :

Expr → id •

Then the Expr is recognized:

Expr → Expr • + id

The left-recursion is handled!

330CS 536 Spring 2006
©

• But ambiguity will still block
construction of an LALR parser. Some
shift/reduce or reduce/reduce conflict
must appear. (Since two or more
distinct parses are possible for some
input).
Consider our original productions for
if-then and if-then-else statements:

Stmt → if (Expr) Stmt •

Stmt → if (Expr) Stmt • else Stmt

Since else can follow Stmt , we have
an unresolvable shift/reduce conflict.

331CS 536 Spring 2006
©

Grammar Engineering
Though LALR grammars are very
general and inclusive, sometimes a
reasonable set of productions is
rejected due to shift/reduce or
reduce/reduce conflicts.
In such cases, the grammar may need
to be “engineered” to allow the parser
to operate.
A good example of this is the
definition of MemberDecls in CSX.
A straightforward definition is

MemberDecls → FieldDecls MethodDecls
 FieldDecls → FieldDecl FieldDecls
 FieldDecls → λ
MethodDecls → MethodDecl MethodDecls
 MethodDecls → λ
FieldDecl → int id ;
MethodDecl → int id () ; Body

332CS 536 Spring 2006
©

When we predict MemberDecls we
get:

MemberDecls → • FieldDecls MethodDecls
 FieldDecls → • FieldDecl FieldDecls
 FieldDecls → λ•

FieldDecl → • int id ;

Now int follows FieldDecls since
MethodDecls ⇒+ int ...
Thus an unresolvable shift/reduce
conflict exists.
The problem is that int is derivable
from both FieldDecls and
MethodDecls , so when we see an
int , we can’t tell which way to parse
it (and FieldDecls → λ requires we
make an immediate decision!).

333CS 536 Spring 2006
©

If we rewrite the grammar so that we
can delay deciding from where the int
was generated, a valid LALR parser
can be built:

MemberDecls → FieldDecl MemberDecls
MemberDecls → MethodDecls
MethodDecls → MethodDecl MethodDecls
 MethodDecls → λ
FieldDecl → int id ;
MethodDecl → int id () ; Body

When MemberDecls is predicted we
have
MemberDecls → • FieldDecl MemberDecls
MemberDecls → • MethodDecls
MethodDecls → • MethodDecl MethodDecls
MethodDecls → λ •

FieldDecl → • int id ;
MethodDecl → • int id () ; Body

334CS 536 Spring 2006
©

Now Follow(MethodDecls) =
Follow(MemberDecls) = “}”, so
we have no shift/reduce conflict.
After int id is matched, the next
token (a “;” or a “(“) will tell us
whether a FieldDecl or a
MethodDecl is being matched.

335CS 536 Spring 2006
©

Properties of LL and LALR
Parsers
• Each prediction or reduce action is

guaranteed correct. Hence the entire
parse (built from LL predictions or LALR
reductions) must be correct.

This follows from the fact that LL parsers
allow only one valid prediction per step.
Similarly, an LALR parser never skips a
reduction if it is consistent with the
current token (and all possible
reductions are tracked).

336CS 536 Spring 2006
©

• LL and LALR parsers detect an syntax
error as soon as the first invalid token is
seen.

Neither parser can match an invalid
program prefix. If a token is matched it
must be part of a valid program prefix. In
fact, the prediction made or the stacked
configuration sets show a possible
derivation of the token accepted so far.

• All LL and LALR grammars are
unambiguous.

LL predictions are always unique and
LALR shift/reduce or reduce/reduce
conflicts are disallowed. Hence only one
valid derivation of any token sequence is
possible.

337CS 536 Spring 2006
©

• All LL and LALR parsers require only
linear time and space (in terms of the
number of tokens parsed).

The parsers do only fixed work per node
of the concrete parse tree, and the size
of this tree is linear in terms of the
number of leaves in it (even with λ-
productions included!).

338CS 536 Spring 2006
©

Symbol Tables in CSX
CSX is designed to make symbol
tables easy to create and use.
There are three places where a new
scope is opened:
• In the class that represents the

program text. The scope is opened as
soon as we begin processing the
classNode (that roots the entire
program). The scope stays open until
the entire class (the whole program)
is processed.

• When a methodDeclNode is
processed. The name of the method is
entered in the top-level (global)
symbol table. Declarations of
parameters and locals are placed in
the method’s symbol table. A

339CS 536 Spring 2006
©

method’s symbol table is closed after
all the statements in its body are type
checked.

• When a blockNode is processed.
Locals are placed in the block’s
symbol table. A block’s symbol table
is closed after all the statements in
its body are type checked.

340CS 536 Spring 2006
©

CSX Allows no Forward
References

This means we can do type-checking
in one pass over the AST. As
declarations are processed, their
identifiers are added to the current
(innermost) symbol table. When a use
of an identifier occurs, we do an
ordinary block-structured lookup,
always using the innermost
declaration found. Hence in

int i = j;
int j = i;

the first declaration initializes i to
the nearest non-local definition of j .
The second declaration initializes j to
the current (local) definition of i .

