
348CS 536 Spring 2006
©

Internal and External Field
Access

Within a class, members may be
accessed without qualification. Thus
in
class C {

static int i;

void subr() {

int j = i;

}

}

field i is accessed like an ordinary
non-local variable.
To implement this, we can treat
member declarations like an ordinary
scope in a block-structured symbol
table.

349CS 536 Spring 2006
©

When the class definition ends, its
symbol table is popped and members
are referenced through the symbol
table entry for the class name.
This means a simple reference to i
will no longer work, but C.i will be
valid.

350CS 536 Spring 2006
©

In languages like C++ that allow
incomplete declarations, symbol table
references need extra care. In

class C {
 int i;
 public:
 int f();
};

int C::f(){return i+1;}

when the definition of f() is
completed, we must restore C’s field
definitions as a containing scope so
that the reference to i in i+1 is
properly compiled.

351CS 536 Spring 2006
©

Public and Private Access
C++ and Java (and most other object-
oriented languages) allow members of
a class to be marked public or
private .
Within a class the distinction is
ignored; all members may be
accessed.
Outside of the class, when a qualified
access like C.i is required, only
public members can be accessed.
This means lookup of class members
is a two-step process. First the
member name is looked up in the
symbol table of the class. Then, the
public /private qualifier is checked.
Access to private members from
outside the class generates an error
message.

352CS 536 Spring 2006
©

C++ and Java also provide a
protected qualifier that allows
access from subclasses of the class
containing the member definition.
When a subclass is defined, it
“inherits” the member definitions of
its ancestor classes. Local definitions
may hide inherited definitions.
Moreover, inherited member
definitions must be public or
protected ; private definitions may
not be directly accessed (though they
are still inherited and may be
indirectly accessed through other
inherited definitions).
Java also allows “blank” access
qualifiers which allow public access
by all classes within a package (a
collection of classes).

353CS 536 Spring 2006
©

Packages and Imports
Java allows packages which group
class and interface definitions into
named units.
A package requires a symbol table to
access members. Thus a reference
java.util.Vector

locates the package java.util
(typically using a CLASSPATH) and
looks up Vector within it.
Java supports import statements
that modify symbol table lookup
rules.
A single class import, like
import java.util.Vector;

brings the name Vector into the
current symbol table (unless a

354CS 536 Spring 2006
©

definition of Vector is already
present).
An “import on demand” like
import java.util.*;

will lookup identifiers in the named
packages after explicit user
declarations have been checked.

355CS 536 Spring 2006
©

Classfiles and Object Files
Class files (“.class” files, produced by
Java compilers) and object files (“.o”
files, produced by C and C++
compilers) contain internal symbol
tables.
When a field or method of a Java
class is accessed, the JVM uses the
classfile’s internal symbol table to
access the symbol’s value and verify
that type rules are respected.
When a C or C++ object file is linked,
the object file’s internal symbol table
is used to determine what external
names are referenced, and what
internally defined names will be
exported.

356CS 536 Spring 2006
©

C, C++ and Java all allow users to
request that a more complete symbol
table be generated for debugging
purposes. This makes internal names
(like local variable) visible so that a
debugger can display source level
information while debugging.

357CS 536 Spring 2006
©

Overloading
A number of programming languages,
including Java and C++, allow
method and subprogram names to be
overloaded.
This means several methods or
subprograms may share the same
name, as long as they differ in the
number or types of parameters they
accept. For example,
class C {
 int x;
 public static int sum(int v1,

int v2) {
 return v1 + v2;
 }
 public int sum(int v3) {
 return x + v3;
 }
}

358CS 536 Spring 2006
©

For overloaded identifiers the symbol
table must return a list of valid
definitions of the identifier. Semantic
analysis (type checking) then decides
which definition to use.
In the above example, while checking
(new C()).sum(10);

both definitions of sum are returned
when it is looked up. Since one
argument is provided, the definition
that uses one parameter is selected
and checked.
A few languages (like Ada) allow
overloading to be disambiguated on
the basis of a method’s result type.
Algorithms that do this analysis are
known, but are fairly complex.

359CS 536 Spring 2006
©

Overloaded Operators
A few languages, like C++, allow
operators to be overloaded.
This means users may add new
definitions for existing operators,
though they may not create new
operators or alter existing precedence
and associativity rules.
(Such changes would force changes
to the scanner or parser.)
For example,
class complex{

float re, im;
complex operator+(complex d){

complex ans;
ans.re = d.re+re;
ans.im = d.im+im;
return ans;

} }
complex c,d; c=c+d;

360CS 536 Spring 2006
©

During type checking of an operator,
all visible definitions of the operator
(including predefined definitions) are
gathered and examined.
Only one definition should
successfully pass type checks.
Thus in the above example, there may
be many definitions of +, but only one
is defined to take complex operands.

361CS 536 Spring 2006
©

Contextual Resolution
Overloading allows multiple
definitions of the same kind of object
(method, procedure or operator) to
co-exist.
Programming languages also
sometimes allow reuse of the same
name in defining different kinds of
objects. Resolution is by context of
use.
For example, in Java, a class name
may be used for both the class and its
constructor. Hence we see
C cvar = new C(10);

In Pascal, the name of a function is
also used for its return value.
Java allows rather extensive reuse of
an identifier, with the same identifier

362CS 536 Spring 2006
©

potentially denoting a class (type), a
class constructor, a package name, a
method and a field.
For example,
class C {

double v;

C(double f) {v=f;}

}

class D {

int C;

double C() {return 1.0;}

C cval = new C(C+C());

}

At type-checking time we examine
all potential definitions and use that
definition that is consistent with the
context of use. Hence new C() must
be a constructor, +C() must be a
function call, etc.

363CS 536 Spring 2006
©

Allowing multiple definitions to co-
exist certainly makes type checking
more complicated than in other
languages.
Whether such reuse benefits
programmers is unclear; it certainly
violates Java’s “keep it simple”
philosophy.

364CS 536 Spring 2006
©

Type and Kind Information in
CSX

In CSX symbol table entries and in
AST nodes for expressions, it is useful
to store type and kind information.
This information is created and tested
during type checking. In fact, most of
type checking involves deciding
whether the type and kind values for
the current construct and its
components are valid.
Possible values for type include:
• Integer (int)

• Boolean (bool)

• Character (char)

• String

365CS 536 Spring 2006
©

• Void
Void is used to represent objects that
have no declared type (e.g., a label or
procedure).

• Error
Error is used to represent objects
that should have a type, but don’t
(because of type errors). Error types
suppress further type checking,
preventing cascaded error messages.

• Unknown
Unknown is used as an initial value,
before the type of an object is
determined.

366CS 536 Spring 2006
©

Possible values for kind include:
• Var (a local variable or field that

may be assigned to)

• Value (a value that may be read
but not changed)

• Array

• ScalarParm (a by-value scalar
parameter)

• ArrayParm (a by-reference array
parameter)

• Method (a procedure or function)

• Label (on a while loop)

367CS 536 Spring 2006
©

Most combinations of type and
kind represent something in CSX.
Hence type==Boolean and
kind==Value is a bool constant
or expression.
type==Void and kind==Method
is a procedure (a method that returns
no value).
Type checking procedure and function
declarations and calls requires some
care.
When a method is declared, you
should build a linked list of
(type,kind) pairs, one for each
declared parameter.
When a call is type checked you
should build a second linked list of
(type,kind) pairs for the actual
parameters of the call.

368CS 536 Spring 2006
©

You compare the lengths of the list of
formal and actual parameters to
check that the correct number of
parameters has been passed.
You then compare corresponding
formal and actual parameter pairs to
check if each individual actual
parameter correctly matches its
corresponding formal parameter.
For example, given

p(int a, bool b[]){ ...

and the call
p(1,false);

you create the parameter list
(Integer, ScalarParm), (Boolean,
ArrayParm)

for p’s declaration and the parameter
list
(Integer,Value),(Boolean, Value)

369CS 536 Spring 2006
©

for p’s call.
Since a Value can’t match an
ArrayParm , you know that the
second parameter in p’s call is
incorrect.

370CS 536 Spring 2006
©

Type Checking Simple Variable
Declarations

Type checking steps:
1. Check that identNode.idname is not

already in the symbol table.
2. Enter identNode.idname into symbol

table with type=typeNode.type and
kind = Variable.

varDeclNode

identNode typeNode

371CS 536 Spring 2006
©

Type Checking Initialized
Variable Declarations

Type checking steps:
1. Check that identNode.idname is not

already in the symbol table.
2. Type check initial value expression.
3. Check that the initial value’s type is

typeNode.type
4. Check that the initial value’s kind is

scalar (Variable, Value or ScalarParm).

varDeclNode

identNode typeNode
expr tree

372CS 536 Spring 2006
©

5. Enter identNode.idname into symbol
table with type=typeNode.type and
kind = Variable.

373CS 536 Spring 2006
©

Type Checking Constant
Declarations

Type checking steps:
1. Check that identNode.idname is not

already in the symbol table.
2. Type check the const value expression.
3. Check that the const value’s kind is

scalar (Variable, Value or ScalarParm).
4. Enter identNode.idname into symbol

table with type = constValue.type and
kind = Value.

constDeclNode

identNode

expr tree

374CS 536 Spring 2006
©

Type Checking IdentNodes

Type checking steps:
1. Lookup identNode.idname in the

symbol table; error if absent.
2. Copy symbol table entry’s type and

kind information into the identNode.
3. Store a link to the symbol table entry

in the identNode (in case we later need
to access symbol table information).

identNode

