
357CS 536 Spring 2006
©

Overloading
A number of programming languages,
including Java and C++, allow
method and subprogram names to be
overloaded.
This means several methods or
subprograms may share the same
name, as long as they differ in the
number or types of parameters they
accept. For example,
class C {
 int x;
 public static int sum(int v1,

int v2) {
 return v1 + v2;
 }
 public int sum(int v3) {
 return x + v3;
 }
}

358CS 536 Spring 2006
©

For overloaded identifiers the symbol
table must return a list of valid
definitions of the identifier. Semantic
analysis (type checking) then decides
which definition to use.
In the above example, while checking
(new C()).sum(10);

both definitions of sum are returned
when it is looked up. Since one
argument is provided, the definition
that uses one parameter is selected
and checked.
A few languages (like Ada) allow
overloading to be disambiguated on
the basis of a method’s result type.
Algorithms that do this analysis are
known, but are fairly complex.

359CS 536 Spring 2006
©

Overloaded Operators
A few languages, like C++, allow
operators to be overloaded.
This means users may add new
definitions for existing operators,
though they may not create new
operators or alter existing precedence
and associativity rules.
(Such changes would force changes
to the scanner or parser.)
For example,
class complex{

float re, im;
complex operator+(complex d){

complex ans;
ans.re = d.re+re;
ans.im = d.im+im;
return ans;

} }
complex c,d; c=c+d;

360CS 536 Spring 2006
©

During type checking of an operator,
all visible definitions of the operator
(including predefined definitions) are
gathered and examined.
Only one definition should
successfully pass type checks.
Thus in the above example, there may
be many definitions of +, but only one
is defined to take complex operands.

361CS 536 Spring 2006
©

Contextual Resolution
Overloading allows multiple
definitions of the same kind of object
(method, procedure or operator) to
co-exist.
Programming languages also
sometimes allow reuse of the same
name in defining different kinds of
objects. Resolution is by context of
use.
For example, in Java, a class name
may be used for both the class and its
constructor. Hence we see
C cvar = new C(10);

In Pascal, the name of a function is
also used for its return value.
Java allows rather extensive reuse of
an identifier, with the same identifier

362CS 536 Spring 2006
©

potentially denoting a class (type), a
class constructor, a package name, a
method and a field.
For example,
class C {

double v;

C(double f) {v=f;}

}

class D {

int C;

double C() {return 1.0;}

C cval = new C(C+C());

}

At type-checking time we examine
all potential definitions and use that
definition that is consistent with the
context of use. Hence new C() must
be a constructor, +C() must be a
function call, etc.

363CS 536 Spring 2006
©

Allowing multiple definitions to co-
exist certainly makes type checking
more complicated than in other
languages.
Whether such reuse benefits
programmers is unclear; it certainly
violates Java’s “keep it simple”
philosophy.

364CS 536 Spring 2006
©

Type and Kind Information in
CSX

In CSX symbol table entries and in
AST nodes for expressions, it is useful
to store type and kind information.
This information is created and tested
during type checking. In fact, most of
type checking involves deciding
whether the type and kind values for
the current construct and its
components are valid.
Possible values for type include:
• Integer (int)

• Boolean (bool)

• Character (char)

• String

365CS 536 Spring 2006
©

• Void
Void is used to represent objects that
have no declared type (e.g., a label or
procedure).

• Error
Error is used to represent objects
that should have a type, but don’t
(because of type errors). Error types
suppress further type checking,
preventing cascaded error messages.

• Unknown
Unknown is used as an initial value,
before the type of an object is
determined.

366CS 536 Spring 2006
©

Possible values for kind include:
• Var (a local variable or field that

may be assigned to)

• Value (a value that may be read
but not changed)

• Array

• ScalarParm (a by-value scalar
parameter)

• ArrayParm (a by-reference array
parameter)

• Method (a procedure or function)

• Label (on a while loop)

367CS 536 Spring 2006
©

Most combinations of type and
kind represent something in CSX.
Hence type==Boolean and
kind==Value is a bool constant
or expression.
type==Void and kind==Method
is a procedure (a method that returns
no value).
Type checking procedure and function
declarations and calls requires some
care.
When a method is declared, you
should build a linked list of
(type,kind) pairs, one for each
declared parameter.
When a call is type checked you
should build a second linked list of
(type,kind) pairs for the actual
parameters of the call.

368CS 536 Spring 2006
©

You compare the lengths of the list of
formal and actual parameters to
check that the correct number of
parameters has been passed.
You then compare corresponding
formal and actual parameter pairs to
check if each individual actual
parameter correctly matches its
corresponding formal parameter.
For example, given

p(int a, bool b[]){ ...

and the call
p(1,false);

you create the parameter list
(Integer, ScalarParm), (Boolean,
ArrayParm)

for p’s declaration and the parameter
list
(Integer,Value),(Boolean, Value)

369CS 536 Spring 2006
©

for p’s call.
Since a Value can’t match an
ArrayParm , you know that the
second parameter in p’s call is
incorrect.

370CS 536 Spring 2006
©

Type Checking Simple Variable
Declarations

Type checking steps:
1. Check that identNode.idname is not

already in the symbol table.
2. Enter identNode.idname into symbol

table with type=typeNode.type and
kind = Variable.

varDeclNode

identNode typeNode

371CS 536 Spring 2006
©

Type Checking Initialized
Variable Declarations

Type checking steps:
1. Check that identNode.idname is not

already in the symbol table.
2. Type check initial value expression.
3. Check that the initial value’s type is

typeNode.type
4. Check that the initial value’s kind is

scalar (Variable, Value or ScalarParm).

varDeclNode

identNode typeNode
expr tree

372CS 536 Spring 2006
©

5. Enter identNode.idname into symbol
table with type=typeNode.type and
kind = Variable.

373CS 536 Spring 2006
©

Type Checking Constant
Declarations

Type checking steps:
1. Check that identNode.idname is not

already in the symbol table.
2. Type check the const value expression.
3. Check that the const value’s kind is

scalar (Variable, Value or ScalarParm).
4. Enter identNode.idname into symbol

table with type = constValue.type and
kind = Value.

constDeclNode

identNode

expr tree

374CS 536 Spring 2006
©

Type Checking IdentNodes

Type checking steps:
1. Lookup identNode.idname in the

symbol table; error if absent.
2. Copy symbol table entry’s type and

kind information into the identNode.
3. Store a link to the symbol table entry

in the identNode (in case we later need
to access symbol table information).

identNode

375CS 536 Spring 2006
©

Type Checking NameNodes

Type checking steps:
1. Type check the identNode.
2. If the subscriptVal is null, copy the

identNode’s type and kind values into
the nameNode and Return.

3. Type check the subscriptVal.
4. Check that identNode’s kind is an

array.
5. Check that subscriptVal’s kind is scalar

and type is integer or character.

nameNode

identNode

expr tree

376CS 536 Spring 2006
©

6. Set the nameNode’s type to the
identNode’s type and the nameNode’s
kind to Variable.

377CS 536 Spring 2006
©

Type Checking Binary
Operators

Type checking steps:
1. Type check left and right operands.
2. Check that left and right operands are

both scalars.
3. binaryOpNode.kind = Value.
4. If binaryOpNode.operator is a plus,

minus, star or slash:
(a) Check that left and right operands

have an arithmetic type (integer or

binaryOpNode

expr treeexpr tree

378CS 536 Spring 2006
©

character).
(b) binaryOpNode.type = Integer

5. If binaryOpNode.operator is an and or
is an or:
(a) Check that left and right operands

have a boolean type.
(b) binaryOpNode.type = Boolean.

6. If binaryOpNode.operator is a
relational operator:
(a) Check that both left and right

operands have an arithmetic type or
both have a boolean type.
(b) binaryOpNode.type = Boolean.

379CS 536 Spring 2006
©

Type Checking Assignments

Type checking steps:
1. Type check the nameNode.
2. Type check the expression tree.
3. Check that the nameNode’s kind is

assignable (Variable, Array, ScalarParm,
or ArrayParm).

4. If the nameNode’s kind is scalar then
check the expression tree’s kind is also
scalar and that both have the same
type. Then return.

asgNode

nameNode

expr tree

380CS 536 Spring 2006
©

5. If the nameNode’s and the expression
tree’s kinds are both arrays and both
have the same type, check that the
arrays have the same length. (Lengths
of array parms are checked at run-
time). Then return.

6. If the nameNode’s kind is array and
its type is character and the expression
tree’s kind is string, check that both
have the same length. (Lengths of array
parms are checked at run-time). Then
return.

7. Otherwise, the expression may not be
assigned to the nameNode.

381CS 536 Spring 2006
©

Type Checking While Loops

Type checking steps:
1. Type check the condition (an expr

tree).
2. Check that the condition’s type is

Boolean and kind is scalar.
3. If the label is null (no identNode is

present) then type check the stmtNode
(the loop body) and return.

whileNode

identNode

expr tree

stmtNode

382CS 536 Spring 2006
©

4.If there is a label (an identNode) then:
(a) Check that the label is not already
present in the symbol table.
(b) If it isn’t, enter label in the symbol
table with kind=VisibleLabel and type=
void.
(c) Type check the stmtNode (the loop
body).
(d) Change the label’s kind (in the
symbol table) to HiddenLabel.

383CS 536 Spring 2006
©

Type Checking Breaks and
Continues

Type checking steps:
1. Check that the identNode is declared

in the symbol table.
2. Check that identNode’s kind is

VisibleLabel. If identNode’s kind is
HiddenLabel issue a special error
message.

breakNode

identNode

384CS 536 Spring 2006
©

Type Checking Returns

It is convenient to arrange that a static
filed named currentMethod will always
point to the methodDeclNode of the
method we are currently checking.
Type checking steps:
1. If returnVal (an expr) is null, check

that currentMethod.returnType is Void.
2. If returnVal (an expr) is not null then

check that returnVal’s kind is scalar and
returnVal’s type is
currentMethod.returnType.

returnNode

expr tree

