
379CS 536 Spring 2006
©

Reading Assignment
Get and read Chapter 9 of Crafting a
Compiler featuring Java.
(Available from DoIt Tech Store)

380CS 536 Spring 2006
©

Type Checking Assignments

Type checking steps:
1. Type check the nameNode.
2. Type check the expression tree.
3. Check that the nameNode’s kind is

assignable (Variable, Array, ScalarParm,
or ArrayParm).

4. If the nameNode’s kind is scalar then
check the expression tree’s kind is also
scalar and that both have the same
type. Then return.

asgNode

nameNode

expr tree

381CS 536 Spring 2006
©

5. If the nameNode’s and the expression
tree’s kinds are both arrays and both
have the same type, check that the
arrays have the same length. (Lengths
of array parms are checked at run-
time). Then return.

6. If the nameNode’s kind is array and
its type is character and the expression
tree’s kind is string, check that both
have the same length. (Lengths of array
parms are checked at run-time). Then
return.

7. Otherwise, the expression may not be
assigned to the nameNode.

382CS 536 Spring 2006
©

Type Checking While Loops

Type checking steps:
1. Type check the condition (an expr

tree).
2. Check that the condition’s type is

Boolean and kind is scalar.
3. If the label is null (no identNode is

present) then type check the stmtNode
(the loop body) and return.

whileNode

identNode

expr tree

stmtNode

383CS 536 Spring 2006
©

4.If there is a label (an identNode) then:
(a) Check that the label is not already
present in the symbol table.
(b) If it isn’t, enter label in the symbol
table with kind=VisibleLabel and type=
void.
(c) Type check the stmtNode (the loop
body).
(d) Change the label’s kind (in the
symbol table) to HiddenLabel.

384CS 536 Spring 2006
©

Type Checking Breaks and
Continues

Type checking steps:
1. Check that the identNode is declared

in the symbol table.
2. Check that identNode’s kind is

VisibleLabel. If identNode’s kind is
HiddenLabel issue a special error
message.

breakNode

identNode

385CS 536 Spring 2006
©

Type Checking Returns

It is convenient to arrange that a static
filed named currentMethod will always
point to the methodDeclNode of the
method we are currently checking.
Type checking steps:
1. If returnVal (an expr) is null, check

that currentMethod.returnType is Void.
2. If returnVal (an expr) is not null then

check that returnVal’s kind is scalar and
returnVal’s type is
currentMethod.returnType.

returnNode

expr tree

386CS 536 Spring 2006
©

Type Checking Method
Declarations

Type checking steps:
1. Create a new symbol table entry m,

with type = typeNode.type and kind =
Method.

2. Check that identNode.idname is not
already in the symbol table; if it isn’t,
enter m using identNode.idname.

3. Create a new scope in the symbol
table.

4. Set currentMethod = this
methodDeclNode.

methodDeclNode

identNode typeNode
args tree decls tree stmts tree

387CS 536 Spring 2006
©

5. Type check the args subtree.
6. Build a list of the symbol table nodes

corresponding to the args subtree;
store it in m.

7. Type check the decls subtree.
8. Type check the stmts subtree.
9. Close the current scope at the top of

the symbol table.

388CS 536 Spring 2006
©

Type Checking Method Calls

We consider calls of procedures in a
statement. Calls of functions in an
expression are very similar.
Type checking steps:
1. Check that identNode.idname is

declared in the symbol table. Its type
should be Void and kind should be
Method.

2. Type check the args subtree.

callNode

identNode

args tree

389CS 536 Spring 2006
©

3. Build a list of the expression nodes
found in the args subtree.

4. Get the list of parameter symbols
declared for the method (stored in the
method’s symbol table entry).

5. Check that the arguments list and the
parameter symbols list both have the
same length.

6. Compare each argument node with its
corresponding parameter symbol:
(a) Both should have the same type.
(b) A Variable, Value, or ScalarParm
kind in an argument node matches a
ScalarParm parameter. An Array or
ArrayParm kind in an argument node
matches an ArrayParm parameter.

390CS 536 Spring 2006
©

Virtual Memory & Run-Time
Memory Organization

The compiler decides how data and
instructions are placed in memory.
It uses an address space provided by
the hardware and operating system.
This address space is usually virtual—
the hardware and operating system
map instruction-level addresses to
“actual” memory addresses.
Virtual memory allows:
• Multiple processes to run in private,

protected address spaces.

• Paging can be used to extend address
ranges beyond actual memory limits.

391CS 536 Spring 2006
©

Run-Time Data Structures

Static Structures
For static structures, a fixed address is
used throughout execution.
This is the oldest and simplest
memory organization.
In current compilers, it is used for:
• Program code (often read-only &

sharable).

• Data literals (often read-only &
sharable).

• Global variables.

• Static variables.

392CS 536 Spring 2006
©

Stack Allocation
Modern programming languages
allow recursion, which requires
dynamic allocation.
Each recursive call allocates a new
copy of a routine’s local variables.
The number of local data allocations
required during program execution is
not known at compile-time.
To implement recursion, all the data
space required for a method is treated
as a distinct data area that is called a
frame or activation record.
Local data, within a frame, is
accessible only while a subprogram is
active.

393CS 536 Spring 2006
©

In mainstream languages like C, C++
and Java, subprograms must return in
a stack-like manner—the most
recently called subprogram will be the
first to return.
A frame is pushed onto a run-time
stack when a method is called
(activated).
When it returns, the frame is popped
from the stack, freeing the routine’s
local data.

394CS 536 Spring 2006
©

As an example, consider the following
C subprogram:

p(int a) {

double b;

double c[10];

b = c[a] * 2.51;

}

Procedure p requires space for the
parameter a as well as the local
variables b and c .
It also needs space for control
information, such as the return
address.
The compiler records the space
requirements of a method.
The offset of each data item relative
to the beginning of the frame is
stored in the symbol table.

395CS 536 Spring 2006
©

The total amount of space needed,
and thus the size of the frame, is also
recorded.
Assume p’s control information
requires 8 bytes (this size is usually
the same for all methods).
Assume parameter a requires 4 bytes,
local variable b requires 8 bytes, and
local array c requires 80 bytes.
Many machines require that word and
doubleword data be aligned, so it is
common to pad a frame so that its
size is a multiple of 4 or 8 bytes.
This guarantees that at all times the
top of the stack is properly aligned.

396CS 536 Spring 2006
©

Here is p ’s frame:

Within p, each local data object is
addressed by its offset relative to the
start of the frame.
This offset is a fixed constant,
determined at compile-time.
We normally store the start of the
frame in a register, so each piece of
data can be addressed as a
(Register, Offset) pair, which is a
standard addressing mode in almost
all computer architectures.

Control Information

Space for a

Space for b

Space for c

Padding

Offset = 0

Offset = 8

Offset = 12

Offset = 20

Total size= 104

397CS 536 Spring 2006
©

For example, if register R points to
the beginning of p’s frame, variable b
can be addressed as (R,12), with 12
actually being added to the contents
of R at run-time, as memory
addresses are evaluated.
Normally, the literal 2.51 of
procedure p is not stored in p’s frame
because the values of local data that
are stored in a frame disappear with
it at the end of a call.
It is easier and more efficient to
allocate literals in a static area, often
called a literal pool or constant pool.
Java uses a constant pool to store
literals, type, method and interface
information as well as class and field
names.

