
398CS 536 Spring 2006
©

Reading Assignment
Get and read Chapter 11 of Crafting a
Compiler featuring Java.
(Available from DoIt Tech Store)

399CS 536 Spring 2006
©

Accessing Frames at Run-Time
During execution there can be many
frames on the stack. When a
procedure A calls a procedure B, a
frame for B’s local variables is pushed
on the stack, covering A’s frame. A’s
frame can’t be popped off because A
will resume execution after B returns.
For recursive routines there can be
hundreds or even thousands of frames
on the stack. All frames but the
topmost represent suspended
subroutines, waiting for a call to
return.

400CS 536 Spring 2006
©

The topmost frame is active; it is
important to be able to access it
directly.
The active frame is at the top of the
stack, so the stack top register could
be used to access it.
The run-time stack may also be used
to hold data other than frames.
It is unwise to require that the
currently active frame always be at
exactly the top of the stack.
Instead a distinct register, often
called the frame pointer, is used to
access the current frame.
This allows local variables to be
accessed directly as offset + frame
pointer, using the indexed addressing
mode found on all modern machines.

401CS 536 Spring 2006
©

Consider the following recursive
function that computes factorials.
int fact(int n) {

if (n > 1)

return n * fact(n-1);

else return 1;

}

The run-time stack corresponding to
the call fact(3) (when the call of
fact(1) is about to return) is:

Control Information

Space for n = 3

Return Value

Control Information

Space for n = 1

Return Value = 1

Control Information

Space for n = 2

Return Value

Top of Stack

Frame Pointer

402CS 536 Spring 2006
©

We place a slot for the function’s
return value at the very beginning of
the frame.
Upon return, the return value is
conveniently placed on the stack, just
beyond the end of the caller’s frame.
Often compilers return scalar values
in specially designated registers,
eliminating unnecessary loads and
stores. For values too large to fit in a
register (arrays or objects), the stack
is used.
When a method returns, its frame is
popped from the stack and the frame
pointer is reset to point to the caller’s
frame.
In simple cases this is done by
adjusting the frame pointer by the
size of the current frame.

403CS 536 Spring 2006
©

Dynamic Links
Because the stack may contain more
than just frames (e.g., function return
values or registers saved across calls),
it is common to save the caller’s
frame pointer as part of the callee’s
control information.
Each frame points to its caller’s frame
on the stack. This pointer is called a
dynamic link because it links a frame
to its dynamic (run-time)
predecessor.

404CS 536 Spring 2006
©

The run-time stack corresponding to
a call of fact(3) , with dynamic
links included, is:

Dynamic Link = Null

Space for n = 3

Return Value

Dynamic Link

Space for n = 1

Return Value = 1

Dynamic Link

Space for n = 2

Return Value

Top of Stack

Frame Pointer

405CS 536 Spring 2006
©

Classes and Objects
C, C++ and Java do not allow
procedures or methods to nest.
A procedure may not be declared
within another procedure.
This simplifies run-time data access—
all variables are either global or local.
Global variables are statically
allocated. Local variables are part of a
single frame, accessed through the
frame pointer.
Java and C++ allow classes to have
member functions that have direct
access to instance variables.

406CS 536 Spring 2006
©

Consider:
class K {

int a;

int sum(){

int b;

return a+b;

} }

Each object that is an instance of
class K contains a member function
sum. Only one translation of sum is
created; it is shared by all instances
of K.
When sum executes it needs two
pointers to access local and object-
level data.
Local data, as usual, resides in a
frame on the run-time stack.

407CS 536 Spring 2006
©

Data values for a particular instance
of K are accessed through an object
pointer (called the this pointer in
Java and C++). When obj.sum()
is called, it is given an extra implicit
parameter that a pointer to obj .

When a+b is computed, b, a local
variable, is accessed directly through
the frame pointer. a, a member of
object obj , is accessed indirectly
through the object pointer that is
stored in the frame (as all parameters
to a method are).

Object Pointer

Space for b

Control Information

Rest of Stack

Top of Stack

Frame Pointer

Space for a

Object Obj

408CS 536 Spring 2006
©

C++ and Java also allow inheritance
via subclassing. A new class can
extend an existing class, adding new
fields and adding or redefining
methods.
A subclass D, of class C, maybe be
used in contexts expecting an object
of class C (e.g., in method calls).
This is supported rather easily—
objects of class D always contain a
class C object within them.
If C has a field F within it, so does D.
The fields D declares are merely
appended at the end of the
allocations for C.
As a result, access to fields of C
within a class D object works
perfectly.

409CS 536 Spring 2006
©

Handling Multiple Scopes
Many languages allow procedure
declarations to nest. Java now allows
classes to nest.
Procedure nesting can be very useful,
allowing a subroutine to directly
access another routine’s locals and
parameters.
Run-time data structures are
complicated because multiple frames,
corresponding to nested procedure
declarations, may need to be
accessed.

410CS 536 Spring 2006
©

To see the difficulties, assume that
routines can nest in Java or C:
int p(int a){

int q(int b){

if (b < 0)

q(-b);

else return a+b;

}

return q(-10);

}

When q executes, it can access not
only its own frame, but also that of p,
in which it is nested.
If the depth of nesting is unlimited,
so is the number of frames that must
be made accessible. In practice, the
level of nesting actually seen is
modest—usually no greater than two
or three.

411CS 536 Spring 2006
©

Static Links
Two approaches are commonly used
to support access to multiple frames.
One approach generalizes the idea of
dynamic links introduced earlier.
Along with a dynamic link, we’ll also
include a static link in the frame’s
control information area. The static
link points to the frame of the
procedure that statically encloses the
current procedure. If a procedure is
not nested within any other
procedure, its static link is null .

412CS 536 Spring 2006
©

The following illustrates static links:

As usual, dynamic links always point
to the next frame down in the stack.
Static links always point down, but
they may skip past many frames. They
always point to the most recent
frame of the routine that statically
encloses the current routine.

Dynamic Link = Null

Space for a

Dynamic Link

Space for b = 10

Dynamic Link

Space for b = -10

Top of Stack

Frame Pointer
Static Link

Static Link

Static Link = Null

413CS 536 Spring 2006
©

In our example, the static links of
both of q’s frames point to p, since it
is p that encloses q’s definition.
In evaluating the expression a+b that
q returns, b, being local to q, is
accessed directly through the frame
pointer. Variable a is local to p, but
also visible to q because q nests
within p. a is accessed by extracting
q’s static link, then using that address
(plus the appropriate offset) to access
a.

414CS 536 Spring 2006
©

Displays
An alternative to using static links to
access frames of enclosing routines is
the use of a display.
A display generalizes our use of a
frame pointer. Rather than
maintaining a single register, we
maintain a set of registers which
comprise the display.
If procedure definitions nest n deep
(this can be easily determined by
examining a program’s AST), we need
n+1 display registers.
Each procedure definition is tagged
with a nesting level. Procedures not
nested within any other routine are at
level 0. Procedures nested within only
one routine are at level 1, etc.

415CS 536 Spring 2006
©

Frames for routines at level 0 are
always accessed using display register
D0. Those at level 1 are always
accessed using register D1, etc.
Whenever a procedure r is executing,
we have direct access to r ’s frame
plus the frames of all routines that
enclose r . Each of these routines
must be at a different nesting level,
and hence will use a different display
register.

416CS 536 Spring 2006
©

The following illustrates the use of
display registers:

Since q is at nesting level 1, its frame
is pointed to by D1. All of q’s local
variables, including b, are at a fixed
offset relative to D1.
Since p is at nesting level 0, its frame
and local variables are accessed via
D0. Each frame’s control information
area contains a slot for the previous
value of the frame’s display register.

Dynamic Link = Null

Space for a

Dynamic Link

Space for b = 10

Dynamic Link

Space for b = -10

Top of Stack

Display D1
Previous D1

Previous D1

Previous D0 Display D0

417CS 536 Spring 2006
©

A display register is saved when a call
begins and restored when the call
ends. A dynamic link is still needed,
because the previous display values
doesn’t always point to the caller’s
frame.
Not all compiler writers agree on
whether static links or displays are
better to use. Displays allow direct
access to all frames, and thus make
access to all visible variables very
efficient. However, if nesting is deep,
several valuable registers may need to
be reserved. Static links are very
flexible, allowing unlimited nesting of
procedures. However, access to non-
local procedure variables can be
slowed by the need to extract and
follow static links.

