
19CS 536 Spring 2007©

What do Compilers Produce?
Pure Machine Code
Compilers may generate code
for a particular machine, not
assuming any operating system
or library routines. This is “pure
code” because it includes
nothing beyond the instruction
set. This form is rare; it is
sometimes used with system
implementation languages, that
define operating systems or
embedded applications (like a
programmable controller). Pure
code can execute on bare
hardware without dependence
on any other software.

20CS 536 Spring 2007©

Augmented Machine Code
Commonly, compilers generate
code for a machine architecture
augmented with operating
system routines and run-time
language support routines.
To use such a program, a
particular operating system
must be used and a collection
of run-time support routines
(I/O, storage allocation,
mathematical functions, etc.)
must be available. The
combination of machine
instruction and OS and run-time
routines define a virtual
machine—a computer that
exists only as a hardware/
software combination.

21CS 536 Spring 2007©

Virtual Machine Code
Generated code can consist
entirely of virtual instructions
(no native code at all). This
allows code to run on a variety
of computers.
Java, with its JVM (Java Virtual
Machine) is a great example of
this approach.
If the virtual machine is kept
simple and clean, its interpreter
can be easy to write. Machine
interpretation slows execution
by a factor of 3:1 to perhaps
10:1 over compiled code.
A “Just in Time” (JIT) compiler
can translate “hot” portions of
virtual code into native code to
speed execution.

22CS 536 Spring 2007©

Advantages of Virtual
Instructions

Virtual instructions serve a
variety of purposes.
• They simplify a compiler by providing

suitable primitives (such as method
calls, string manipulation, and so on).

• They contribute to compiler
transportability.

• They may decrease in the size of
generated code since instructions are
designed to match a particular
programming language (for example,
JVM code for Java).

23CS 536 Spring 2007©

Almost all compilers, to a
greater or lesser extent,
generate code for a virtual
machine, some of whose
operations must be interpreted.

24CS 536 Spring 2007©

Formats of Translated
Programs

Compilers differ in the format
of the target code they
generate. Target formats may
be categorized as assembly
language, relocatable binary,
or memory-image.

• Assembly Language (Symbolic)
Format

A text file containing assembler
source code is produced. A
number of code generation
decisions (jump targets, long
vs. short address forms, and so
on) can be left for the
assembler. This approach is
good for instructional projects.

25CS 536 Spring 2007©

Generating assembler code
supports cross-compilation
(running a compiler on one
computer, while its target is a
second computer). Generating
assembly language also
simplifies debugging and
understanding a compiler
(since you can see the
generated code).

C rather than a specific
assembly language can
generated, using C as a
“universal assembly language.”

26CS 536 Spring 2007©

C is far more machine-
independent than any
particular assembly language.
However, some aspects of a
program (such as the run-time
representations of program and
data) are inaccessible using C
code, but readily accessible in
assembly language.

27CS 536 Spring 2007©

• Relocatable Binary Format

Target code may be generated
in a binary format with
external references and local
instruction and data addresses
are not yet bound. Instead,
addresses are assigned relative
to the beginning of the module
or relative to symbolically
named locations. A linkage step
adds support libraries and
other separately compiled
routines and produces an
absolute binary program
format that is executable.

28CS 536 Spring 2007©

• Memory-Image (Absolute Binary)
Form

Compiled code may be loaded
into memory and immediately
executed. This is faster than
going through the intermediate
step of link/editing. The ability
to access library and
precompiled routines may be
limited. The program must be
recompiled for each execution.
Memory-image compilers are
useful for student and
debugging use, where frequent
changes are the rule and
compilation costs far exceed
execution costs.

29CS 536 Spring 2007©

Java is designed to use and
share classes defined and
implemented at a variety of
organizations. Rather than use
a fixed copy of a class (which
may be outdated), the JVM
supports dynamic linking of
externally defined classes.
When first referenced, a class
definition may be remotely
fetched, checked, and loaded
during program execution. In
this way “foreign code” can be
guaranteed to be up-to-date
and secure.

30CS 536 Spring 2007©

The Structure of a Compiler
A compiler performs two major
tasks:
• Analysis of the source program being

compiled

• Synthesis of a target program
Almost all modern compilers
are syntax-directed: The
compilation process is driven
by the syntactic structure of the
source program.
A parser builds semantic
structure out of tokens, the
elementary symbols of
programming language syntax.
Recognition of syntactic
structure is a major part of the
analysis task.

31CS 536 Spring 2007©

Semantic analysis examines the
meaning (semantics) of the
program. Semantic analysis
plays a dual role.
It finishes the analysis task by
performing a variety of
correctness checks (for
example, enforcing type and
scope rules). Semantic analysis
also begins the synthesis
phase.

The synthesis phase may
translate source programs into
some intermediate
representation (IR) or it may
directly generate target code.

32CS 536 Spring 2007©

If an IR is generated, it then
serves as input to a code
generator component that
produces the desired machine-
language program. The IR may
optionally be transformed by
an optimizer so that a more
efficient program may be
generated.

33CS 536 Spring 2007©

Type Checker

Optimizer

Code

Scanner

Symbol Tables

Parser

Source
Program

(Character
Stream)

Tokens Syntax
Tree

(AST)

Decorated
AST

Intermediate
Representation

(IR)

IR

Generator

Target Machine
Code

Translator

Abstract

The Structure of a Syntax-Directed Compiler

34CS 536 Spring 2007©

Scanner
The scanner reads the source
program, character by
character. It groups individual
characters into tokens
(identifiers, integers, reserved
words, delimiters, and so on).
When necessary, the actual
character string comprising the
token is also passed along for
use by the semantic phases.
The scanner:
• Puts the program into a compact and

uniform format (a stream of tokens).

• Eliminates unneeded information
(such as comments).

• Sometimes enters preliminary
information into symbol tables (for

35CS 536 Spring 2007©

example, to register the presence of a
particular label or identifier).

• Optionally formats and lists the
source program

Building tokens is driven by
token descriptions defined
using regular expression
notation.
Regular expressions are a
formal notation able to
describe the tokens used in
modern programming
languages. Moreover, they can
drive the automatic generation
of working scanners given only
a specification of the tokens.
Scanner generators (like Lex,
Flex and Jlex) are valuable
compiler-building tools.

