
30CS 536 Spring 2007©

The Structure of a Compiler
A compiler performs two major
tasks:
• Analysis of the source program being

compiled

• Synthesis of a target program
Almost all modern compilers
are syntax-directed: The
compilation process is driven
by the syntactic structure of the
source program.
A parser builds semantic
structure out of tokens, the
elementary symbols of
programming language syntax.
Recognition of syntactic
structure is a major part of the
analysis task.

31CS 536 Spring 2007©

Semantic analysis examines the
meaning (semantics) of the
program. Semantic analysis
plays a dual role.
It finishes the analysis task by
performing a variety of
correctness checks (for
example, enforcing type and
scope rules). Semantic analysis
also begins the synthesis
phase.

The synthesis phase may
translate source programs into
some intermediate
representation (IR) or it may
directly generate target code.

32CS 536 Spring 2007©

If an IR is generated, it then
serves as input to a code
generator component that
produces the desired machine-
language program. The IR may
optionally be transformed by
an optimizer so that a more
efficient program may be
generated.

33CS 536 Spring 2007©

Type Checker

Optimizer

Code

Scanner

Symbol Tables

Parser

Source
Program

(Character
Stream)

Tokens Syntax
Tree

(AST)

Decorated
AST

Intermediate
Representation

(IR)

IR

Generator

Target Machine
Code

Translator

Abstract

The Structure of a Syntax-Directed Compiler

34CS 536 Spring 2007©

Scanner
The scanner reads the source
program, character by
character. It groups individual
characters into tokens
(identifiers, integers, reserved
words, delimiters, and so on).
When necessary, the actual
character string comprising the
token is also passed along for
use by the semantic phases.
The scanner:
• Puts the program into a compact and

uniform format (a stream of tokens).

• Eliminates unneeded information
(such as comments).

• Sometimes enters preliminary
information into symbol tables (for

35CS 536 Spring 2007©

example, to register the presence of a
particular label or identifier).

• Optionally formats and lists the
source program

Building tokens is driven by
token descriptions defined
using regular expression
notation.
Regular expressions are a
formal notation able to
describe the tokens used in
modern programming
languages. Moreover, they can
drive the automatic generation
of working scanners given only
a specification of the tokens.
Scanner generators (like Lex,
Flex and Jlex) are valuable
compiler-building tools.

36CS 536 Spring 2007©

Parser
Given a syntax specification (as
a context-free grammar, CFG),
the parser reads tokens and
groups them into language
structures.
Parsers are typically created
from a CFG using a parser
generator (like Yacc, Bison or
Java CUP).
The parser verifies correct
syntax and may issue a syntax
error message.
As syntactic structure is
recognized, the parser usually
builds an abstract syntax tree
(AST), a concise representation
of program structure, which
guides semantic processing.

37CS 536 Spring 2007©

Type Checker
(Semantic Analysis)

The type checker checks the
static semantics of each AST
node. It verifies that the construct
is legal and meaningful (that all
identifiers involved are declared,
that types are correct, and so on).
If the construct is semantically
correct, the type checker
“decorates” the AST node, adding
type or symbol table information
to it. If a semantic error is
discovered, a suitable error
message is issued.
Type checking is purely
dependent on the semantic rules
of the source language. It is
independent of the compiler’s
target machine.

38CS 536 Spring 2007©

Translator
(Program Synthesis)

If an AST node is semantically
correct, it can be translated.
Translation involves capturing
the run-time “meaning” of a
construct.
For example, an AST for a while
loop contains two subtrees,
one for the loop’s control
expression, and the other for
the loop’s body. Nothing in the
AST shows that a while loop
loops! This “meaning” is
captured when a while loop’s
AST is translated. In the IR, the
notion of testing the value of
the loop control expression,

39CS 536 Spring 2007©

and conditionally executing the
loop body becomes explicit.
The translator is dictated by the
semantics of the source
language. Little of the nature of
the target machine need be
made evident. Detailed
information on the nature of
the target machine (operations
available, addressing, register
characteristics, etc.) is reserved
for the code generation phase.
In simple non-optimizing
compilers (like our class
project), the translator
generates target code directly,
without using an IR.
More elaborate compilers may
first generate a high-level IR

40CS 536 Spring 2007©

(that is source language
oriented) and then
subsequently translate it into a
low-level IR (that is target
machine oriented). This
approach allows a cleaner
separation of source and target
dependencies.

41CS 536 Spring 2007©

Optimizer
The IR code generated by the
translator is analyzed and
transformed into functionally
equivalent but improved IR code
by the optimizer.
The term optimization is
misleading: we don’t always
produce the best possible
translation of a program, even
after optimization by the best of
compilers.
Why?
Some optimizations are
impossible to do in all
circumstances because they
involve an undecidable problem.
Eliminating unreachable (“dead”)
code is, in general, impossible.

42CS 536 Spring 2007©

Other optimizations are too
expensive to do in all cases.
These involve NP-complete
problems, believed to be
inherently exponential.
Assigning registers to variables
is an example of an NP-complete
problem.
Optimization can be complex; it
may involve numerous
subphases, which may need to
be applied more than once.
Optimizations may be turned off
to speed translation.
Nonetheless, a well designed
optimizer can significantly speed
program execution by
simplifying, moving or
eliminating unneeded
computations.

43CS 536 Spring 2007©

Code Generator
IR code produced by the
translator is mapped into target
machine code by the code
generator. This phase uses
detailed information about the
target machine and includes
machine-specific optimizations
like register allocation and code
scheduling.
Code generators can be quite
complex since good target
code requires consideration of
many special cases.
Automatic generation of code
generators is possible. The
basic approach is to match a
low-level IR to target
instruction templates, choosing

44CS 536 Spring 2007©

instructions which best match
each IR instruction.
A well-known compiler using
automatic code generation
techniques is the GNU C
compiler. GCC is a heavily
optimizing compiler with
machine description files for
over ten popular computer
architectures, and at least two
language front ends (C and
C++).

