Block Structure Conceprs

- Nested Visibility

No access to identifiers outside
their scope.

. Nearest Declaration Applies
Using static nesting of scopes.

. Automatic Allocation and Deallocation
of Locals

Lifetime of data objects is
bound to the scope of the
Identifiers that denote them.

5536 Spring 2008

59

Class symbolTable contains the
following methods:

. public void openScope () {
A new and empty scope is opened.

. public void closeScope() throws
EmptySTException
The innermost scope is closed. An
exception is thrown if there is no
scope to close.

. public void insert (Symb s)
throws DuplicateException,
EmptySTException

A symb is inserted in the innermost
scope. An exception is thrown if a
Symb with the same name is
already in the innermost scope or if
there is no symbol table to insert
into.

5536 Spring 2008

61

Block-Structured Symbol

Tables

Block structured symbol tables
are designed to support the
scoping rules of block
structured languages.

For our CSX project we’ll use
class symb to represent symbols
and symbolTable tO
implemented operations
needed for a block-structured
symbol table.

Class symb will contain a
method

public String name()

that returns the name
associated with a symbol.

5556 Spring 2008 60

. public Symb localLookup (Strings)
The innermost scope is searched
for a symb whose name is equal to
s. Null is returned if no symb
named s is found.

- public Symb globalLookup (String s)
All scopes, from innermost to
outermost, are searched for a Ssymb
whose name is equal to s. The first
symb that matches s is found;
otherwise null is returned if no
matching symb is found.

5536 Spring 2008 62



Is Case Significant?

In some languages (C, C++,
Java and many others) case is
significant in identifiers. This
means aa and aa are different
symbols that may have entirely
different definitions.

In other languages (Pascal, Ada,
Scheme, CSX) case is not
significant. In such languages
aa and aa are two alternative
spellings of the same identifier.

Data structures commonly used
to implement symbol tables
usually treat different cases as
different symbols. This is fine
when case is significant in a
language. When case is
insignificant, you probably will

5556 Spring 2008

63

need to strip case before
entering or looking up
identifiers.

This just means that identifiers
are converted to a uniform case
before they are entered or
looked up. Thus if we choose to
use lower case uniformly, the
identifiers aaa, aaa, and aaa are
all converted to aaa for
purposes of insertion or
lookup.

BUT, inside the symbol table the
identifier is stored in the form it
was declared so that
programmers see the form of
identifier they expect in
listings, error messages, etc.

How are Symbol Tables
Implemented?

There are a number of data
structures that can reasonably
be used to implement a symbol
table:

. An Ordered List
Symbols are stored in a linked list,
sorted by the symbol’s name. This
is simple, but may be a bit too slow
if many identifiers appear in a
scope.

. A Binary Search Tree
Lookup is much faster than in
linked lists, but rebalancing may be
needed. (Entering identifiers in
sorted order turns a search tree
into a linked list.)

. Hash Tables
The most popular choice.

5556 Spring 2008 6

5536 Spring 2008

65

ImplemenTing Block-
Structured Symbol Tables

To implement a block
structured symbol table we
need to be able to efficiently
open and close individual
scopes, and limit insertion to
the innermost current scope.

This can be done using one
symbol table structure if we tag
individual entries with a “scope
number.”

It is far easier (but more
wasteful of space) to allocate
one symbol table for each
scope. Open scopes are
stacked, pushing and popping
tables as scopes are opened
and closed.

5536 Spring 2008 66



Be careful though—many
preprogrammed stack
implementations don’t allow
you to “peek” at entries below
the stack top. This is necessary
to lookup an identifier in all
open scopes.

If a suitable stack
implementation (with a peek
operation) isn’t available, a
linked list of symbol tables will
suffice.

5536 Sprin

g 2008

67

n is the length of the string, c;

is the i-th character and all
arithmetic is done without
overflow checking.

Why such an elaborate hash
function?

Simpler hash functions can
have major problems.

n—1
Consider Y ¢, (add the

i=o
characters).
For short identifiers the sum
grows slowly, so large indices
won’t often be used (leading to
non-uniform use of the hash
table).

5536 Spring 2008

69

More oN Hashtables

Hashtables are a very useful
data structure. Java provides a
predefined Hashtable class.
Python includes a built-in
dictionary type.

Every Java class has a hashcode
method, which allows any
object to be entered into a Java
Hashtable.

For most objects, hash codes
are pretty simple (the address
of the corresponding object is
often used).

But for strings Java uses a much
more elaborate hash

n-—1
function: ¥ ¢, x 37’

i=0

5556 Spring 2008 8

n-—1
We can try ] ¢, (product of
i=o
characters), but now
(surprisingly) the size of the
hash table becomes an issue.
The problem is that if even one
character is encoded as an even
number, the product must be
even.

If the hash table is even in size
(a natural thing to do), most
hash table entries will be at
even positions. Similarly, if
even one character is encoded
as a multiple of 3, the whole
product will be a multiple of 3,
so hash tables that are a
multiple of three in size won’t
be uniformly used.

5536 Spring 2008 70



To see how bad things can get,
consider a hash table with size
210 (which is equal to 2x3x5x7).
This should be a particularly
bad table size if a product hash
is used. (Why?)

Is it? As an experiment, all the
words in the Unix spell
checker’s dictionary (26000
words) where entered. Over
50% (56.7% actually) hit
position 0 in the table!

Why such non-uniformity?

If an identifier contains
characters that are multiples of
2, 3,5 and 7, then their hash
will be a multiple of 210 and
will map to position 0.

5536 Sprin

g 2008

71

Now the reason for Java’s more
complex string hash function
becomes evident—it can
uniformly fill a hash table
whose size isn’t prime.

For example, in wisconsin, n
has an ASCIl code of 110 (2x55)
and i has a code of 105
(7x5x3).

If we change the table size ever
so slightly, to 211, no table
entry gets more than 1% of the
26000 words hashed, which is
very good.

Why such a big difference? Well
211 is prime and there is a bit a
folk-wisdom that states that
prime numbers are good
choices for hash table sizes.
Now our product hash will
cover table entries far more
uniformly (small factors in the
hash don’t divide the table size
evenly).

5556 Spring 2008

5536 Spring 2008

How are Collisions Handled?

Since identifiers are often
unlimited in length, the set of
possible identifiers is infinite.
Even if we limit ourselves is
short identifiers (say 10 of
fewer characters), the range of
valid identifiers is greater than
2610

This means that all hash tables
need to contend with collisions,
when two different identifiers

map to the same place in the
table.

How are collisions handled?

The simplest approach is linear
resolution. If identifier ia
hashes to position p in a hash

5536 Spring 2008



table of size s and position p is
already filled, we try (p+1) mod
s, then (p+2) mod s, until a free
position is found.

As long as the table is not too
filled, this approach works well.
When we approach an almost-
filled situation, long search
chains form, and we
degenerate to an unordered
list.

If the table is 100% filled, linear
resolution fails.

Some hash table
implementations, including
Java’s, set a load factor
between 0 and 1.0. When the
fraction of filled entries in the
table exceeds the load factor,

5536 Sprin

g 2008

75

as the table fills, chains from
each table position get longer.
As long as the table is not too
overfilled, average chain length
will be small.

5536 Spring 2008

77

table size is increased and all
entries are rehashed.

Note that bundling of a
hashcode method within all Java
objects makes rehashing easy
to do automatically. If the hash
function is external to the
symbol table entries, rehashing
may need to be done manually
by the user.

An alternative to linear
resolution is chained
resolution, in which symbol
table entries contain pointers
to chains of symbols rather
than a single symbol. All
identifiers that hash to the
same position appear on the
same chain. Now overflowing
table size is not catastrophic—

5556 Spring 2008 76

Reading AssiGNMENT

Read Chapter 3 of

Crafting a Compiler Second
Edition.

5536 Spring 2008 78



ScanNing

A scanner transforms a character
stream into a token stream.

A scanner is sometimes called a
lexical analyzer or lexer.

Scanners use a formal notation
(regular expressions) to specify
the precise structure of tokens.

But why bother? Aren’t tokens
very simple in structure?

Token structure can be more
detailed and subtle than one
might expect. Consider simple
quoted strings in C, C++ or Java.
The body of a string can be any
sequence of characters except a
quote character (which must be
escaped). But is this simple
definition really correct?

5536 Spring 2008

79

Reqular ExpRressions

Regular expressions specify
simple (possibly infinite) sets of
strings. Regular expressions
routinely specify the tokens
used in programming
languages.

Regular expressions can drive a
scanner generator.

Regular expressions are widely
used in computer utilities:

.The Unix utility grep uses regular
expressions to define search
patterns in files.

-Unix shells allow regular
expressions in file lists for a
command.

5536 Spring 2008”

81

Can a newline character appear in
a string? In C it cannot, unless it is
escaped with a backslash.

C, C++ and Java allow escaped
newlines in strings, Pascal forbids
them entirely. Ada forbids all
unprintable characters.

Are null strings (zero-length)
allowed? In C, C++, Java and Ada
they are, but Pascal forbids them.

(In Pascal a string is a packed
array of characters, and zero
length arrays are disallowed.)

A precise definition of tokens can
ensure that lexical rules are
clearly stated and properly
enforced.

5556 Spring 2008

. Most editors provide a “context
search” command that specifies
desired matches using regular
expressions.

.The Windows Find utility allows
some regular expressions.

5536 Spring 2008



Reqgular Sers

The sets of strings defined by
regular expressions are called
regular sets.

When scanning, a token class will
be a regular set, whose structure
is defined by a regular
expression.

Particular instances of a token
class are sometimes called
lexemes, though we will simply
call a string in a token class an
instance of that token. Thus we
call the string abc an identifier if
it matches the regular expression
that defines valid identifier
tokens.

Regular expressions use a finite
character set, or vocabulary
(denoted ).

CS 536

Spring 2008

83

This vocabulary is normally the
character set used by a computer.
Today, the ASCII character set,
which contains a total of 128
characters, is very widely used.

Java uses the Unicode character
set which includes all the ASCII
characters as well as a wide
variety of other characters.

An empty or null string is allowed
(denoted A, “lambda”). Lambda
represents an empty buffer in
which no characters have yet
been matched. It also represents
optional parts of tokens. An
integer literal may begin with a
plus or minus, or it may begin
with A if it is unsigned.

5556 Spring 2008



