
Do n
ot

co
py

4
Grammars and Parsing

Formally a language is a set of finite-length strings over a finite alphabet. Because
most interesting languages are infinite sets, we cannot define such languages by
enumerating their elements. A grammar is a compact, finite representation of a
language. In Chapter Chapter:global:two, we discuss the rudiments of context-
free grammars (CFGs) and define a simple language using a CFG. Due to their ef-
ficiency and precision, CFGs are commonly used for defining the syntax of actual
programming languages. In Chapter 4, we formalize the definition and notation
for CFGs and present algorithms that analyze such grammars in preparation
for the parsing techniques covered in Chapters Chapter:global:five and Chap-
ter:global:six.

4.1 Context-Free Grammars: Concepts and Notation

A CFG is defined by the following four components.

1. A finite terminal alphabet �. This is the set of tokens produced by the
scanner. We always augment this set with the token $, which signifies end-
of-input.

2. A finite nonterminal alphabet N. Symbols in this alphabet are variables of
the grammar.

3. A start symbol S 2 N that initiates all derivations. S is also called the goal
symbol.

4. P, a finite set of productions (sometimes called rewriting rules) of the form
A!X1 : : :Xm, where A 2 N, Xi 2 N [�, 1 � i � m, and m � 0. The

1

Do n
ot

co
py

2 Chapter 4. Grammars and Parsing

only valid production with m = 0 is of the form A!�, where � denotes
the empty string.

These components are often grouped into a four-tuple, G = (N;�;P; S), which
is the formal definition of a CFG. The terminal and nonterminal alphabets must
be disjoint (i.e., � \ N = ;). The vocabulary V of a CFG is the set of terminal
and nonterminal symbols (i.e., V = � [N).

A CFG is essentially a recipe for creating strings. Starting with S, nontermi-
nals are rewritten using the grammar's productions until only terminals remain.
A rewrite using the production A!� replaces the nonterminal A with the vocab-
ulary symbols in �. As a special case, a rewrite using the production A!� causes
A to be erased. Each rewrite is a step in a derivation of the resulting string. The
set of terminal strings derivable from S comprises the context-free language of
grammar G, denoted L(G).

In describing parsers, algorithms, and grammars, consistency is useful in de-
noting symbols and strings of symbols. We follow the notation set out in the
following chart.

Names Beginning With Represent Symbols In Examples
Uppercase N A, B, C, Prefix
Lowercase and punctuation � a, b, c, if, then, (, ;
X, Y N [� Xi, Y3

Other Greek letters (N [�)? �,

Using this notation, we write a production as A!� or A!X1 : : :Xm, depending
on whether the detail of the production's right-hand side (RHS) is of interest.
This format emphasizes that a production's left-hand side (LHS) must be a single
nonterminal but the RHS is a string of zero or more vocabulary symbols.

There is often more than one way to rewrite a given nonterminal; in such
cases, multiple productions share the same LHS symbol. Instead of repeating the
LHS symbol, an “or notation” is used.

A ! �

j �

� � �
j �

This is an abbreviation for the following sequence of productions.

A ! �

A ! �

� � �
A ! �

If A! is a production, then �A�) �� denotes one step of a derivation using
this production. We extend) to)+ (derived in one or more steps) and
)? (derived in zero or more steps). If S)? �, then � is said to be a sentential

Do n
ot

co
py

4.1. Context-Free Grammars: Concepts and Notation 3

1 E ! Prefix (E)
2 j v Tail
3 Prefix ! f
4 j �

5 Tail ! + E
6 j �

Figure 4.1: A simple expression grammar.

form of the CFG. SF(G) denotes the set of sentential forms of grammar G. Thus
L(G) = fw 2 �? j S)+ w g. Also, L(G) = SF(G)\�?. That is, the language of G is
simply those sentential forms of G that are terminal strings.

Throughout a derivation, if more than one nonterminal is present in a sen-
tential form, then there is a choice as to which nonterminal should be expanded
in the next step. Thus to characterize a derivation sequence, we need to specify,
at each step, which nonterminal is expanded and which production is applied.
We can simplify this characterization by adopting a convention such that non-
terminals are rewritten in some systematic order. Two such conventions are the

� leftmost derivation and

� rightmost derivation.

4.1.1 Leftmost Derivations

A derivation that always chooses the leftmost possible nonterminal at each step
is called a leftmost derivation. If we know that a derivation is leftmost, we
need only specify the productions in order of their application; the expanded
nonterminal is implicit. To denote derivations that are leftmost, we use)lm ,
)+

lm
, and)?

lm . A sentential form produced via a leftmost derivation is called
a left sentential form. The production sequence discovered by a large class of
parsers—the top-down parsers—is a leftmost derivation. Hence, these parsers
are said to produce a leftmost parse.

As an example, consider the grammar shown in Figure 4.1, which generates
simple expressions (v represents a variable and f represents a function). A
leftmost derivation of f (v + v) is as follows.

E)lm Prefix (E)
)lm f (E)
)lm f (v Tail)
)lm f (v + E)
)

lm
f (v + v Tail)

)lm f (v + v)

Do n
ot

co
py

4 Chapter 4. Grammars and Parsing

4.1.2 Rightmost Derivations

An alternative to a leftmost derivation is a rightmost derivation (sometimes called
a canonical derivation). In such derivations the rightmost possible nonterminal
is always expanded. This derivation sequence may seem less intuitive given the
English convention of processing information left-to-right, but such derivations
are produced by an important class of parsers, namely the bottom-up parsers
discussed in Chapter Chapter:global:six.

As a bottom-up parser discovers the productions that derive a given token
sequence, it traces a rightmost derivation, but the productions are applied in
reverse order. That is, the last step taken in a rightmost derivation is the first
production applied by the bottom-up parser; the first step involving the start
symbol is the parer's final production. The sequence of productions applied by a
bottom-up parser is called a rightmost or canonical parse. For derivations that
are rightmost, the notation)rm ,)+

rm , and)?

rm is used. A sentential form
produced via a rightmost derivation is called a right sentential form. A rightmost
derivation of the grammar shown in Figure 4.1 is as follows.

E)rm Prefix (E)
)rm Prefix (v Tail)
)rm Prefix (v + E)
)rm Prefix (v + v Tail)
)rm Prefix (v + v)
)rm f (v + v)

4.1.3 Parse Trees

A derivation is often represented by a parse tree (sometimes called a derivation
tree). A parse tree has the following characteristics.

� It is rooted by the grammar's start symbol S.

� Each node is either a grammar symbol or �.

� Its interior nodes are nonterminals. An interior node and its children rep-
resent the application of a production. That is, a node representing a non-
terminal A can have offspring X1;X2; : : : ;Xm if, and only if, there exists
a grammar production A!X1 X2 . . .Xm. When a derivation is complete,
each leaf of the corresponding parse tree is either a terminal symbol or �.

Figure 4.2 shows the parse tree for f (v + v) using the grammar from Figure 4.1.
Parse trees serve nicely to visualize how a string is structured by a grammar.
A leftmost or rightmost derivation is essentially a textual representation of a
parse tree, but the derivation conveys also the order in which the productions
are applied.

A sentential form is derivable from a grammar's start symbol. Hence, a parse
tree must exist for every sentential form. Given a sentential form and its parse
tree, a phrase of the sentential form is a sequence of symbols descended from

Do n
ot

co
py

4.1. Context-Free Grammars: Concepts and Notation 5

E

Prefix

f

(E)

v Tail

+ E

v Tail

Figure 4.2: The parse tree for f (v + v) .

a single nonterminal in the parse tree. A simple or prime phrase is a phrase
that contains no smaller phrase. That is, it is a sequence of symbols directly
derived from a nonterminal. The handle of a sentential form is the leftmost
simple phrase. (Simple phrases cannot overlap, so “leftmost” is unambiguous.)
Consider the parse tree in Figure 4.2 and the sentential form f (v Tail). f and
v Tail are simple phrases and f is the handle. Handles are important because they
represent individual derivation steps, which can be recognized by various parsing
techniques.

4.1.4 Other Types of Grammars

Although CFGs serve well to characterize syntax, most programming languages
contain rules that are not expressible using CFGs. For example, the rule that
variables must be declared before they are used cannot be expressed, because
a CFG provides no mechanism for transmitting to the body of a program the
exact set of variables that has been declared. In practice, syntactic details that
cannot be represented in a CFG are considered part of the static semantics and
are checked by semantic routines (along with scope and type rules). The non-
CFGs that are relevant to programming language translation are the

� regular grammars, which are less powerful than CFGs, and the

� context-sensitive and unrestricted grammars, which are more powerful.

Do n
ot

co
py

6 Chapter 4. Grammars and Parsing

Regular Grammars

A CFG that is limited to productions of the form A!a B or C!d is a regular
grammar. Each rule's RHS consists of either a symbol from � [f� g followed
by a nonterminal symbol or just a symbol from � [f� g. As the name sug-
gests, a regular grammar defines a regular set (see Exercise 13.) We observed in
Chapter Chapter:global:three that the language f [i]i j i � 1 g is not regular; this
language is generated by the following CFG.

1 S ! T
2 T ! [T]
3 j �

This grammar establishes that the languages definable by regular grammars (reg-
ular sets) are a proper subset of the context-free languages.

Beyond Context-Free Grammars

CFGs can be generalized to create richer definitional mechanisms. A context-
sensitive grammar requires that nonterminals be rewritten only when they appear
in a particular context (for example, �A�!���), provided the rule never causes
the sentential form to contract in length. An unrestricted or type-0 grammar is
the most general. It allows arbitrary patterns to be rewritten.

Although context-sensitive and unrestricted grammars are more powerful
than CFGs, they also are far less useful.

� Efficient parsers for such grammars do not exist. Without a parser, a gram-
mar definition cannot participate in the automatic construction of compiler
components.

� It is difficult to prove properties about such grammars. For example, it
would be daunting to prove that a given type-0 grammar generates the C
programming language.

Efficient parsers for many classes of CFGs do exist. Hence, CFGs present a
nice balance between generality and practicality. Throughout this text, we focus
on CFGs. Whenever we mention a grammar (without saying which kind), you
should assume that the grammar is context-free.

4.2 Properties of CFGs

CFGs are a definitional mechanism for specifying languages. Just as there are
many programs that compute the same result, so there are many grammars that
generate the same language. Some of these grammars may have properties that
complicate parser construction. The most common of these properties are

� the inclusion of useless nonterminals,

Do n
ot

co
py

4.2. Properties of CFGs 7

� allowing a derived string to have two or more different parse trees, and

� generating the wrong language.

In this section, we discuss these properties and their implication for language
processing.

4.2.1 Reduced Grammars

A grammar is reduced if each of its nonterminals and productions participates in
the derivation of some string in the grammar's language. Nonterminals that can
be safely removed are called useless.

1 S ! A
2 j B
3 A ! a
4 B ! B b
5 C ! c

The above grammar contains two kinds of nonterminals that cannot participate
in any derived string.

� With S as the start symbol, the nonterminal C cannot appear in any phrase.

� Any phrase that mentions B cannot be rewritten to contain only terminals.

Exercises 14 and 15 consider how to detect both forms of useless nonterminals.
When B, C, and their associated productions are removed, the following reduced
grammar is obtained.

1 S ! A
2 A ! a

Many parser generators verify that a grammar is reduced. An unreduced gram-
mar probably contains errors that result from mistyping of grammar specifica-
tions.

4.2.2 Ambiguity

Some grammars allow a derived string to have two or more different parse trees
(and thus a nonunique structure). Consider the following grammar, which gen-
erates expressions using the infix operator for subtraction.

1 Expr ! Expr - Expr
2 j id

Do n
ot

co
py

8 Chapter 4. Grammars and Parsing

Expr

Expr - Expr

idExpr - Expr

id id

Expr

Expr-Expr

id Expr-Expr

idid

Figure 4.3: Two parse trees for id - id - id.

This grammar allows two different parse trees for id - id - id, as illustrated in
Figure 4.3.

Grammars that allow different parse trees for the same terminal string are
called ambiguous. They are rarely used because a unique structure (i.e., parse
tree) cannot be guaranteed for all inputs. Hence, a unique translation, guided by
the parse tree structure, may not be obtained.

It seems we need an algorithm that checks an arbitrary CFG for ambigu-
ity. Unfortunately, no algorithm is possible for this in the general case [HU79,
Mar91]. Fortunately, for certain grammar classes, successful parser construc-
tion by the algorithms we discuss in Chapters Chapter:global:five and Chap-
ter:global:six proves a grammar to be unambiguous.

4.2.3 Faulty Language Definition

The most potentially serious flaw that a grammar might have is that it generates
the “wrong” language. That is, the terminal strings derivable by the grammar
do not correspond exactly to the strings present in the desired language. This
is a subtle point, because a grammar typically serves as the very definition of a
language's syntax.

The correctness of a grammar is usually tested informally by attempting to
parse a set of inputs, some of which are supposed to be in the language and some
of which are not. One might try to compare for equality the languages defined
by a pair of grammars (considering one a standard), but this is rarely done. For
some grammar classes, such verification is possible; for others, no comparison
algorithm is known. A general comparison algorithm applicable to all CFGs is
known to be impossible to construct [Mar91].

Do n
ot

co
py

4.3. Transforming Extended Grammars 9

foreach p 2 Prods of the form “ A!� [X1. . .Xn] � ” do
N NEWNONTERM()
p “ A!� N � ”
Prods Prods [f “ N!X1. . .Xn ” g
Prods Prods [f “ N!� ” g

foreach p 2 Prods of the form “ B! f X1. . .Xm g � ” do
M NEWNONTERM()
p “ B! M � ”
Prods Prods [f “ M!X1. . .Xn M ” g
Prods Prods [f “ M!� ” g

Figure 4.4: Algorithm to transform a BNF grammar into standard form.

4.3 Transforming Extended Grammars
Backus-Naur form (BNF) extends the grammar notation defined in Section 4.1
with syntax for defining optional and repeated symbols.

� Optional symbols are enclosed in square brackets. In the production

A!� [X1 : : :Xn] �

the symbols X1 : : :Xn are entirely present or absent between the symbols
of � and �.

� Repeated symbols are enclosed in braces. In the production

B! f X1 : : :Xm g �

the entire sequence of symbols X1 : : :Xm can be repeated zero or more
times.

These extensions are useful in representing many programming language con-
structs. In Java, declarations can optionally include modifiers such as final,
static, and const. Each declaration can include a list of identifiers. A produc-
tion specifying a Java-like declaration could be as follows.

Declaration![final] [static] [const] Type identifier f , identifier g

This declaration insists that the modifiers be ordered as shown. Exercises 11
and 12 consider how to specify the optional modifiers in any order.

Although BNF can be useful, algorithms for analyzing grammars and build-
ing parsers assume the standard grammar notation as introduced in Section 4.1.
The algorithm in Figure 4.4 transforms extended BNF grammars into standard
form. For the BNF syntax involving braces, the transformation uses right re-
cursion on M to allow zero or more occurrences of the symbols enclosed within
braces. This transformation also works using left recursion—the resulting gram-
mar would have generated the same language.

Do n
ot

co
py

10 Chapter 4. Grammars and Parsing

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Figure 4.5: A top-down parse of begin simplestmt ; simplestmt ; end $.

As discussed in Section 4.1, a particular derivation (e.g., leftmost or right-
most) depends on the structure of the grammar. It turns out that right-recursive
rules are more appropriate for top-down parsers, which produce leftmost deriva-
tions. Similarly, left-recursive rules are more suitable for bottom-up parsers,
which produce rightmost derivations.

4.4 Parsers and Recognizers

Compilers are expected to verify the syntactic validity of their inputs with respect
to a grammar that defines the programming language's syntax. Given a grammar
G and an input string x, the compiler must determine if x 2 L(G). An algorithm
that performs this test is called a recognizer.

Do n
ot

co
py

4.4. Parsers and Recognizers 11

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Program

begin Stmts end $

Stmt ; Stmts

simplestmt

Stmt ; Stmts

simplestmt

Figure 4.6: A bottom-up parse of begin simplestmt ; simplestmt ; end $.

For language translation, we must determine not only the string's validity,
but also its structure, or parse tree. An algorithm for this task is called a parser.
Generally, there are two approaches to parsing.

� A parser is considered top-down if it generates a parse tree by starting at the
root of the tree (the start symbol), expanding the tree by applying produc-
tions in a depth-first manner. A top-down parse corresponds to a preorder
traversal of the parse tree. Top-down parsing techniques are predictive in
nature because they always predict the production that is to be matched
before matching actually begins. The top-down approach includes the
recursive-descent parser discussed in Chapter Chapter:global:two.

� The bottom-up parsers generate a parse tree by starting at the tree's leaves
and working toward its root. A node is inserted in the tree only after its

Do n
ot

co
py

12 Chapter 4. Grammars and Parsing

children have been inserted. A bottom-up parse corresponds to a postorder
traversal of the parse tree.

The following grammar generates the skeletal block structure of a programming
language.

1 Program ! begin Stmts end $
2 Stmts ! Stmt ; Stmts
3 j �

4 Stmt ! simplestmt
5 j begin Stmts end

Using this grammar, Figures 4.5 and 4.6 illustrate a top-down and bottom-up
parse of the string begin simplestmt ; simplestmt ; end $.

When specifying a parsing technique, we must state whether a leftmost or
rightmost parse will be produced. The best-known and most widely used top-
down and bottom-up parsing strategies are called LL and LR, respectively. These
names seem rather arcane, but they reflect how the input is processed and which
kind of parse is produced. In both cases, the first character (L) states that the
token sequence is processed from left to right. The second letter (L or R) indicates
whether a leftmost or rightmost parse is produced. The parsing technique can be
further characterized by the number of lookahead symbols (i.e., symbols beyond
the current token) that the parser may consult to make parsing choices. LL(1) and
LR(1) parsers are the most common, requiring only one symbol of lookahead.

4.5 Grammar Analysis Algorithms
It is often necessary to analyze a grammar to determine if it is suitable for parsing
and, if so, to construct tables that can drive a parsing algorithm. In this section,
we discuss a number of important analysis algorithms, and so strengthen the
basic concepts of grammars and derivations. These algorithms are central to the
automatic construction of parsers, as discussed in Chapters Chapter:global:five
and Chapter:global:six.

4.5.1 Grammar Representation
The algorithms presented in this chapter refer to a collection of utilities for ac-
cessing and modifying representations of a CFG. The efficiency of these algo-
rithms is affected by the data structures upon which these utilities are built. In
this section, we examine how to represent CFGs efficiently. We assume that the
implementation programming language offers the following constructs directly
or by augmentation.

� A set is an unordered collection of distinct objects.

� A list is an ordered collection of objects. An object can appear multiple
times in a list.

Do n
ot

co
py

4.5. Grammar Analysis Algorithms 13

� An iterator is a construct that enumerates the contents of a set or list.

As discussed in Section 4.1, a grammar formally contains two disjoint sets of
symbols, � and N, which contain the grammar's terminals and nonterminals,
respectively. Grammars also contain a designated start symbol and a set of pro-
ductions. The following observations are relevant to obtaining an efficient rep-
resentation for grammars.

� Symbols are rarely deleted from a grammar.

� Transformations such as those shown in Figure 4.4 can add symbols and
productions to a grammar.

� Grammar-based algorithms typically visit all rules for a given nonterminal
or visit all occurrences of a given symbol in the productions.

� Most algorithms process a production's RHS one symbol at a time.

Based on these observations, we represent a production by its LHS and a list of
the symbols on its RHS. The empty string � is not represented explicitly as a
symbol. Instead, a production A!� has an empty list of symbols for its RHS.
The collection of grammar utilities is as follows.

GRAMMAR(S): Creates a new grammar with start symbol S and no productions.

PRODUCTION(A; rhs): Creates a new production for nonterminal A and returns
a descriptor for the production. The iterator rhs supplies the symbols for
the production's RHS.

PRODUCTIONS(): Returns an iterator that visits each production in the gram-
mar.

NONTERMINAL(A): Adds A to the set of nonterminals. An error occurs if A
is already a terminal symbol. The function returns a descriptor for the
nonterminal.

TERMINAL(x): Adds x to the set of terminals. An error occurs if x is already a
nonterminal symbol. The function returns a descriptor for the terminal.

NONTERMINALS(): Returns an iterator for the set of nonterminals.

TERMINALS(): Returns an iterator for the set of terminal symbols.

ISTERMINAL(X): Returns true if X is a terminal; otherwise, returns false.

RHS(p): Returns an iterator for the symbols on the RHS of production p.

LHS(p): Returns the nonterminal defined by production p.

PRODUCTIONSFOR(A): Returns an iterator that visits each production for non-
terminal A.

Do n
ot

co
py

14 Chapter 4. Grammars and Parsing

procedure DERIVESEMPTYSTRING()
foreach A 2 NONTERMINALS() do SymbolDerivesEmpty(A) false
foreach p 2 PRODUCTIONS() do

RuleDerivesEmpty(p) false
1call COUNTSYMBOLS(p)

call CHECKFOREMPTY(p)
2foreach X 2WorkList do
3WorkList WorkList� fX g
4foreach x 2 OCCURRENCES(X) do

p PRODUCTION(x)
Count(p) Count(p)� 1
call CHECKFOREMPTY(p)

end
procedure COUNTSYMBOLS(p)

Count(p) 0
foreach X 2 RHS(p) do Count(p) Count(p) + 1

end
procedure CHECKFOREMPTY(p)

if Count(p) = 0
then

5RuleDerivesEmpty(p) true
A LHS(p)
if not SymbolDerivesEmpty(A)
then

6SymbolDerivesEmpty(A) true
7WorkList WorkList [f Ag

end

Figure 4.7: Algorithm for determining nonterminals and productions that can derive �.

OCCURRENCES(X): Returns an iterator that visits each occurrence of X in the
RHS of all rules.

PRODUCTION(y): Returns a descriptor for the production A!� where � con-
tains the occurrence y of some vocabulary symbol.

TAIL(y): Accesses the symbols appearing after an occurrence. Given a sym-
bol occurrence y in the rule A!� y �, TAIL(y) returns an iterator for the
symbols in �.

Do n
ot

co
py

4.5. Grammar Analysis Algorithms 15

4.5.2 Deriving the Empty String

One of the most common grammar computations is determining which nonter-
minals can derive �. This information is important because such nonterminals
may disappear during a parse and hence must be carefully handled. Determining
if a nonterminal can derive � is not entirely trivial because the derivation can
take more than one step:

A) BCD) BC) B) �:

An algorithm to compute the productions and symbols that can derive � is shown
in Figure 4.7. The computation utilizes a worklist at Step 2. A worklist is a set
that is augmented and diminished as the algorithm progresses. The algorithm
is finished when the worklist is empty. Thus the loop at Step 2 must account
for changes to the set WorkList. To prove termination of algorithms that utilize
worklists, it must be shown that all worklist elements appear a finite number of
times.

In the algorithm of Figure 4.7, the worklist contains nonterminals that are
discovered to derive �. The integer Count(p) is initialized at Step 1 to the number
of symbols on p's RHS. The count for any production of the form A!� is 0.
Once a production is known to derive �, its LHS is placed on the worklist at
Step 7. When a symbol is taken from the worklist at Step 3, each occurrence
of the symbol is visited at Step 4 and the count of the associated production is
decremented by 1. This process continues until the worklist is exhausted. The
algorithm establishes two structures related to derivations of �, as follows.

� RuleDerivesEmpty(p) indicates whether production p can derive �. When
every symbol in rule p's RHS can derive �, Step 5 establishes that p can
derive �.

� SymbolDerivesEmpty(A) indicates whether the nonterminal A can derive �.
When any production for A can derive �, Step 6 establishes that A can
derive �.

Both forms of information are useful in the grammar analysis and parsing al-
gorithms discussed in Chapters 4, Chapter:global:five, and Chapter:global:six.

4.5.3 First Sets

A set commonly consulted by parser generators is First(�). This is the set of all
terminal symbols that can begin a sentential form derivable from the string of
grammar symbols in �. Formally,

First(�) = f a 2 � j �)? a � g:

Some texts include � in First(�) if �)? �. The resulting algorithms require fre-
quent subtraction of � from symbol sets. We adopt the convention of never

Do n
ot

co
py

16 Chapter 4. Grammars and Parsing

function FIRST(�) : Set
8foreach A 2 NONTERMINALS() do VisitedFirst(A) false

ans INTERNALFIRST(�)
return (ans)

end
function INTERNALFIRST(X�) : Set

9if X� = ?

then return (;)

10if X 2 �

then return (fX g)

/? ?/
11/? X is a nonterminal. ?/

/? ?/
ans ;
if not VisitedFirst(X)
then

12VisitedFirst(X) true
foreach rhs 2 ProductionsFor(X) do

13ans ans [INTERNALFIRST(rhs)
14if SymbolDerivesEmpty(X)

then ans ans [INTERNALFIRST(�)
15return (ans)

end

Figure 4.8: Algorithm for computing First(�).

including � in First(�). Testing whether a given string of symbols � derives �

is easily accomplished—when the results from the algorithm of Figure 4.7 are
available.

First(�) is computed by scanning � left-to-right. If � begins with a terminal
symbol a, then clearly First(�) = f a g. If a nonterminal symbol A is encountered,
then the grammar productions for A must be consulted. Nonterminals that can
derive � potentially disappear during a derivation, so the computation must ac-
count for this as well.

As an example, consider the nonterminals Tail and Prefix from the grammar in
Figure 4.1. Each nonterminal has one production that contributes information
directly to the nonterminal's First set. Each nonterminal also has a �-production,
which contributes nothing. The solutions are as follows.

First(Tail) = f+g

First(Prefix) = f f g

In some situations, the First set of one symbol can depend on the First sets of
other symbols. To compute First(E), the production E!Prefix (E) requires com-

Do n
ot

co
py

4.5. Grammar Analysis Algorithms 17

putation of First(Prefix). Because Prefix)? �, First((E)) must also be included.
The resulting set is as follows.

First(E) = f v; f; (g

Termination of First(A) must be handled properly in grammars where the com-
putation of First(A) appears to depend on First(A), as follows.

A ! B
� � �

B ! C
� � �

C ! A

In this grammar, First(A) depends on First(B), which depends on First(C), which
depends on First(A). In computing First(A), we must avoid endless iteration or
recursion. A sophisticated algorithm could preprocess the grammar to determine
such cycles of dependence. We leave this as Exercise 17 and present a clearer
but slightly less efficient algorithm in Figure 4.8. This algorithm avoids endless
computation by remembering which nonterminals have already been visited, as
follows.

� First(�) is computed by invoking FIRST(�).

� Before any sets are computed, Step 8 resets VisitedFirst(A) for each nonter-
minal A.

� VisitedFirst(X) is set at Step 12 to indicate that the productions of A already
participate in the computation of First(�).

The primary computation is carried out by the function INTERNALFIRST, whose
input argument is the string X�. If X� is not empty, then X is the string's first
symbol and � is the rest of the string. INTERNALFIRST then computes its answer
as follows.

� The empty set is returned if X� is empty at Step 9. We denote this condi-
tion by ? to emphasize that the empty set is represented by a null list of
symbols.

� If X is a terminal, then First(X�) is fX g at Step 10.

� The only remaining possibility is that X is a nonterminal. If VisitedFirst(X)
is false, then the productions for X are recursively examined for inclusion.
Otherwise, X's productions already participate in the current computation.

� If X can derive � at Step 14—this fact has been previously computed by
the algorithm in Figure 4.7—then we must include all symbols in First(�).

Do n
ot

co
py

18 Chapter 4. Grammars and Parsing

Level First ans Step Done? Comment
X �

COMPUTEFIRST(Tail)
0 Tail ? f g Step 11
1 + E f + g Step 10 ? Tail!+E
1 ? ? f g Step 9 ? Tail!�

0 f + g Step 13 After all rules for Tail
1 ? ? f g Step 9 ? Since � = ?
0 f + g Step 14 ? Final answer

COMPUTEFIRST(Prefix)
0 Prefix ? f g Step 11
1 f ? f f g Step 10 ? Prefix! f
1 ? ? f g Step 9 ? Prefix!�

0 f f g Step 13 After all rules for Prefix
1 ? ? f g Step 9 ? Since � = ?
0 f f g Step 14 ? Final answer

COMPUTEFIRST(E)
0 E ? f g Step 11
1 Prefix (E) f g Step 11 E!Prefix (E)
1 f f g Step 15 Computation shown

above
2 (E) f (g Step 10 ? Since Prefix)? �

1 f f,(g Step 14 ? Results due to
E!Prefix (E)

1 v Tail f v g Step 10 ? E! v Tail
1 ? ? f g Step 9 Since � = ?
0 f f,(,v g Step 14 ? Final answer

Figure 4.9: First sets for the nonterminals of Figure 4.1.

Figure 4.9 shows the progress of COMPUTEFIRST as it is invoked on the nonter-
minals of Figure 4.1. The level of recursion is shown in the leftmost column.
Each call to FIRST(X�) is shown with nonblank entries in the X and � columns.
A “?” indicates that the call does not recurse further. Figure 4.10 shows an-
other grammar and the computation of its First sets; for brevity, recursive calls to
INTERNALFIRST on null strings are omitted.

4.5.4 Follow Sets

Parser-construction algorithms often require the computation of the set of ter-
minals that can follow a nonterminal A in some sentential form. Because we
augment grammars to contain an end-of-input token ($), every nonterminal ex-

Do n
ot

co
py

4.5. Grammar Analysis Algorithms 19

1 S ! A B c
2 A ! a
3 j �

4 B ! b
5 j �

Level First ans Step Done? Comment
X �

COMPUTEFIRST(B)
0 B ? f g Step 11
1 b ? f b g Step 10 ? B!b
1 ? ? f g Step 9 ? B!�

0 f b g Step 14 ? Final answer

COMPUTEFIRST(A)
0 A ? f g Step 11
1 a ? f a g Step 10 ? A!a
1 ? ? f g Step 9 ? A!�

0 f a g Step 14 ? Final answer

COMPUTEFIRST(S)
0 S ? f g Step 11
1 A B c f a g Step 15 Computation shown

above
2 B c f b g Step 15 Because A)? �;

computation shown
above

3 c ? f c g Step 10 ? Because B)? �

2 f b,cg Step 14 ?

1 f a,b,c g Step 14 ?

0 f a,b,c g Step 14 ?

Figure 4.10: A grammar and its First sets.

Do n
ot

co
py

20 Chapter 4. Grammars and Parsing

function FOLLOW(A) : Set
foreach A 2 NONTERMINALS() do

16VisitedFollow(A) false
ans INTERNALFOLLOW(A)
return (ans)

end
function INTERNALFOLLOW(A) : Set

ans ;
17if not VisitedFolow(A)

then
18VisitedFollow(A) true
19foreach a 2 OCCURRENCES(A) do
20ans ans [FIRST(TAIL(a))
21if ALLDERIVEEMPTY(TAIL(a))

then
targ LHS(PRODUCTION(a))

22ans ans [INTERNALFOLLOW(targ)
23return (ans)

end
function ALLDERIVEEMPTY() : Boolean

foreach X 2 do
if not SymbolDerivesEmpty(X) or X 2 �

then return (false)
return (true)

end

Figure 4.11: Algorithm for computing Follow(A).

cept the goal symbol must be followed by some terminal. Formally, for A 2 N,

Follow(A) = f b 2 � j S)+ � A b � g:

Follow(A) provides the right context associated with nonterminal A. For example,
only those terminals in Follow(A) can occur after a production for A is applied.

The algorithm shown in Figure 4.11 computes Follow(A). Many aspects of
this algorithm are similar to the First(�) algorithm given in Figure 4.8.

� Follow(A) is computed by invoking FOLLOW(A).

� Before any sets are computed, Step 16 resets VisitedFollow(A) for each
nonterminal A.

� VisitedFollow(A) is set at Step 18 to indicate that the symbols following A
are already participating in this computation.

Do n
ot

co
py

4.5. Grammar Analysis Algorithms 21

Level Rule Step Result Comment

COMPUTEFOLLOW(Prefix)
0 FOLLOW(Prefix)
0 E! Prefix (E) Step 20 f (g

COMPUTEFOLLOW(E)
0 FOLLOW(E)
0 E!Prefix (E) Step 20 f) g

0 Tail!+ E Step 22 f g

1 FOLLOW(Tail)
1 E! v Tail Step 22 f g

2 FOLLOW(E)
Step 17 f g Recursion avoided

1 Step 23 f g Returns
0 Step 23 f) g Returns

COMPUTEFOLLOW(Tail)
0 FOLLOW(Tail)
0 E! v Tail Step 22 f g

1 FOLLOW(E)
1 E!Prefix (E) Step 20 f) g

1 Tail!+ E Step 22 f g

2 FOLLOW(Tail)
Step 17 f g Recursion avoided

1 Step 23 f) g Returns
0 Step 23 f) g Returns

Figure 4.12: Follow sets for the nonterminals of Figure 4.1.

The primary computation is performed by INTERNALFOLLOW(A). Each occur-
rence a of A is visited by the loop at Step 19. TAIL(a) is the list of symbols
immediately following the occurrence of A.

� Any symbol in First(TAIL(a)) can follow A. Step 20 includes such symbols
in the returned set.

� Step 21 detects if the symbols in TAIL(a) can derive �. This situation arises
when there are no symbols appearing after this occurrence of A or when
the symbols appearing after A can each derive �. In either case, Step 22
includes the Follow set of the current production's LHS.

Figure 4.12 shows the progress of COMPUTEFOLLOW as it is invoked on the non-
terminals of Figure 4.1. As another example, Figure 4.13 shows the computa-
tion of Follow sets for the grammar in Figure 4.10.

Do n
ot

co
py

22 Chapter 4. Grammars and Parsing

Level Rule Step Result Comment

COMPUTEFOLLOW(B)
0 FOLLOW(B)
0 S!A B c Step 20 f cg

0 Step 23 f cg Returns

COMPUTEFOLLOW(A)
0 FOLLOW(A)
0 S! A B c Step 20 f b,c g

0 Step 23 f b,c g Returns

COMPUTEFOLLOW(S)
0 FOLLOW(S)
0 Step 23 f g Returns

Figure 4.13: Follow sets for the grammar in Figure 4.10. Note that Follow(S) = f g
because S does not appear on the RHS of any production.

First and Follow sets can be generalized to include strings of length k rather
than length 1. Firstk(�) is the set of k-symbol terminal prefixes derivable from
�. Similarly, Followk(A) is the set of k-symbol terminal strings that can follow A
in some sentential form. Firstk and Followk are used in the definition of parsing
techniques that use k-symbol lookaheads (for example, LL(k) and LR(k)). The
algorithms that compute First1(�) and Follow1(A) can be generalized to compute
Firstk(�) and Followk(A) sets (see Exercise 24).

This ends our discussion of CFGs and grammar-analysis algorithms. The First
and Follow sets introduced in this chapter play an important role in the automatic
construction of LL and LR parsers, as discussed in Chapters Chapter:global:five
and Chapter:global:six, respectively.

Do n
ot

co
py

4.5. Grammar Analysis Algorithms 23

Exercises
1. Transform the following grammar into a standard CFG using the algorithm

in Figure 4.4.

1 S ! Number
2 Number ! [Sign] [Digs period] Digs
3 Sign ! plus
4 j minus
5 Digs ! digit f digit g

2. Design a language and context-free grammar to represent the following
languages.

(a) The set of strings of base-8 numbers.

(b) The set of strings of base-16 numbers.

(c) The set of strings of base-1 numbers.

(d) A language that offers base-8, base-16, and base-1 numbers.

3. Describe the language denoted by each of the following grammars.

(a) (f A; B; C g; f a; b; cg; ;; A)

(b) (f A; B; C g; f a; b; cg; f A!B C g; A)

(c) (f A; B; C g; f a; b; cg; f A!A a; A!b g; A)

(d) (f A; B; C g; f a; b; cg; f A!B B; B!a; B!b; B!c g; A)

4. What are the difficulties associated with constructing a grammar whose
generated strings are decimal representations of irrational numbers?

5. A grammar for infix expressions follows.

1 Start ! E $
2 E ! T plus E
3 j T
4 T ! T times F
5 j F
6 F ! (E)
7 j num

(a) Show the leftmost derivation of the following string.

num plus num times num plus num $

(b) Show the rightmost derivation of the following string.

num times num plus num times num $

(c) Describe how this grammar structures expressions, in terms of the
precedence and left- or right- associativity of operators.

Do n
ot

co
py

24 Chapter 4. Grammars and Parsing

6. Consider the following two grammars.

(a)

1 Start ! E $
2 E ! (E plus E
3 j num

(b)

1 Start ! E $
2 E ! E (plus E
3 j num

Which of these grammars, if any, is ambiguous? Prove your answer by
showing two distinct derivations of some input string for the ambiguous
grammar(s).

7. Compute First and Follow sets for the nonterminals of the following gram-
mar.

1 S ! a S e
2 j B
3 B ! b B e
4 j C
5 C ! c C e
6 j d

8. Compute First and Follow sets for each nonterminal in ac grammar from
Chapter Chapter:global:two, reprised as follows.

1 Prog ! Dcls Stmts $
2 Dcls ! Dcl Dcls
3 j �

4 Dcl ! floatdcl id
5 j intdcl id
6 Stmts ! Stmt Stmts
7 j �

8 Stmt ! id assign Val ExprTail
9 j print id

10 ExprTail ! plus Val ExprTail
11 j minus Val ExprTail
12 j �

13 Val ! id
14 j num

9. Compute First and Follow sets for each nonterminal in Exercise 1.

Do n
ot

co
py

4.5. Grammar Analysis Algorithms 25

10. As discussed in Section 4.3, the algorithm in Figure 4.4 could use left-
or right-recursion to transform a repeated sequence of symbols into stan-
dard grammar form. A production of the form A!A � is said to be left
recursive. Similarly, a production of the form A!� A is said to be right
recursive. Show that any grammar that contains left- and right-recursive
rules for the same LHS nonterminal must be ambiguous.

11. Section 4.3 describes extended BNF notation for optional and repeated
symbol sequences. Suppose the n grammar symbols X1 : : :Xn represent a
set of n options. What is the effect of the following grammar with regard
to how the options can appear?

Options ! Options Option
j �

Option ! X1

j X2

� � �
j Xn

12. Consider n optional symbols X1 : : :Xn as described in Exercise 11.

(a) Devise a CFG that generates any subset of these options. That is, the
symbols can occur in any order, any symbol can be missing, and no
symbol is repeated.

(b) What is the relation between the size of your grammar and n, the
number of options?

(c) How is your solution affected if symbols Xi and Xj are present only if
i < j?

13. Show that regular grammars and finite automata have equivalent defini-
tional power by developing

(a) an algorithm that translates regular grammars into finite automata
and

(b) an algorithm that translates finite automata into regular grammars.

14. Devise an algorithm to detect nonterminals that cannot be reached from a
CFG's goal symbol.

15. Devise an algorithm to detect nonterminals that cannot derive any terminal
string in a CFG.

16. A CFG is reduced by removing useless terminals and productions. Con-
sider the following two tasks.

(a) Nonterminals not reachable from the grammar's goal symbol are re-
moved.

(b) Nonterminals that derive no terminal string are removed.

Do n
ot

co
py

26 Chapter 4. Grammars and Parsing

Does the order of the above tasks matter? If so, which order is preferred?

17. The algorithm presented in Figure 4.8 retains no information between in-
vocations of FIRST. As a result, the solution for a given nonterminal might
be computed multiple times.

(a) Modify the algorithm so it remembers and references valid previous
computations of First(A); A 2 N

(b) Frequently an algorithm needs First sets computed for all X 2 N.
Devise an algorithm that efficiently computes First sets for all nonter-
minals in a grammar. Analyze the efficiency of your algorithm.
Hint: Consider constructing a directed graph whose vertices represent
nonterminals. Let an edge (A;B) represent that First(B) depends on
First(A).

(c) Repeat this exercise for the Follow sets.

18. Prove that COMPUTEFIRST(A) correctly computes First(A) for any A 2 N.

19. Prove that COMPUTEFOLLOW(A) correctly computes Follow(A) for any A 2
N.

20. Let G be any CFG and assume � 62 L(G). Show that G can be transformed
into a language-equivalent CFG that uses no �-productions.

21. A unit production is a rule of the form A!B. Show that any CFG that
contains unit productions can be transformed into a language-equivalent
CFG that uses no unit productions.

22. Some CFGs denote a language with an infinite number of strings; others
denote finite languages. Devise an algorithm that determines whether a
given CFG generates an infinite language.

Hint: Use the results of Exercises 20 and 21 to simplify the analysis.

23. Let G be an unambiguous CFG without �-productions.

(a) If x 2 L(G), show that the number of steps needed to derive x is linear
in the length of x.

(b) Does this linearity result hold if �-productions are included?

(c) Does this linearity result hold if G is ambiguous?

24. The algorithms in Figures 4.8 and 4.11 compute First(�) and Follow(A).

(a) Modify the algorithm in Figure 4.8 to compute Firstk(�).
Hint: Consider formulating the algorithm so that when Firsti(�) is
computed, enough information is retained to compute Firsti+1(�).

(b) Modify the algorithm in Figure 4.11 to compute Followk(A).

Do n
ot

co
py

Bibliography

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[Mar91] John C. Martin. Introduction to Langauges and the Theory of Com-
putation. McGraw-Hill, 1991.

27

