
FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

NAME
flexdoc − documentation for flex, fast lexical analyzer generator

SYNOPSIS
flex [−−bcdfhilnpstvwBFILTV78+ −−C[aefFmr] −−Pprefix −−Sskeleton] [filename ...]

DESCRIPTION
flex is a tool for generating scanners: programs which recognized lexical patterns in text. flex reads the
given input files, or its standard input if no file names are given, for a description of a scanner to generate.
The description is in the form of pairs of regular expressions and C code, called rules. flex generates as out-
put a C source file, lex.yy.c, which defines a routine yylex(). This file is compiled and linked with the −−lfl
library to produce an executable. When the executable is run, it analyzes its input for occurrences of the
regular expressions. Whenever it finds one, it executes the corresponding C code.

SOME SIMPLE EXAMPLES
First some simple examples to get the flavor of how one uses flex. The following flex input specifies a
scanner which whenever it encounters the string "username" will replace it with the user’s login name:

%%
username printf("%s", getlogin());

By default, any text not matched by a flex scanner is copied to the output, so the net effect of this scanner is
to copy its input file to its output with each occurrence of "username" expanded. In this input, there is just
one rule. "username" is the pattern and the "printf" is the action. The "%%" marks the beginning of the
rules.

Here’s another simple example:

int num_lines = 0, num_chars = 0;

%%
\n ++num_lines; ++num_chars;
. ++num_chars;

%%
main()

{
yylex();
printf("# of lines = %d, # of chars = %d\n",

num_lines, num_chars);
}

This scanner counts the number of characters and the number of lines in its input (it produces no output
other than the final report on the counts). The first line declares two globals, "num_lines" and
"num_chars", which are accessible both inside yylex() and in the main() routine declared after the second
"%%". There are two rules, one which matches a newline ("\n") and increments both the line count and the
character count, and one which matches any character other than a newline (indicated by the "." regular
expression).

A somewhat more complicated example:

/∗ scanner for a toy Pascal-like language ∗ /

%{
/∗ need this for the call to atof() below ∗ /
#include <math.h>
%}

Version 2.4 November 1993 1

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

DIGIT [0-9]
ID [a-z][a-z0-9]∗

%%

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,

atoi(yytext));
}

{DIGIT}+"."{DIGIT}∗ {
printf("A float: %s (%g)\n", yytext,

atof(yytext));
}

if|then|begin|end|procedure|function {
printf("A keyword: %s\n", yytext);
}

{ID} printf("An identifier: %s\n", yytext);

"+"|"-"|"∗ "|"/" printf("An operator: %s\n", yytext);

"{"[ˆ}\n]∗ "}" /∗ eat up one-line comments ∗ /

[\t\n]+ /∗ eat up whitespace ∗ /

. printf("Unrecognized character: %s\n", yytext);

%%

main(argc, argv)
int argc;
char ∗∗ argv;

{
++argv, --argc; /∗ skip over program name ∗ /
if (argc > 0)

yyin = fopen(argv[0], "r");
else

yyin = stdin;

yylex();
}

This is the beginnings of a simple scanner for a language like Pascal. It identifies different types of tokens
and reports on what it has seen.

The details of this example will be explained in the following sections.

FORMAT OF THE INPUT FILE
The flex input file consists of three sections, separated by a line with just %% in it:

definitions
%%
rules

Version 2.4 November 1993 2

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

%%
user code

The definitions section contains declarations of simple name definitions to simplify the scanner
specification, and declarations of start conditions, which are explained in a later section.

Name definitions have the form:

name definition

The "name" is a word beginning with a letter or an underscore (’_’) followed by zero or more letters, digits,
’_’, or ’-’ (dash). The definition is taken to begin at the first non-white-space character following the name
and continuing to the end of the line. The definition can subsequently be referred to using "{name}",
which will expand to "(definition)". For example,

DIGIT [0-9]
ID [a-z][a-z0-9]∗

defines "DIGIT" to be a regular expression which matches a single digit, and "ID" to be a regular expres-
sion which matches a letter followed by zero-or-more letters-or-digits. A subsequent reference to

{DIGIT}+"."{DIGIT}∗

is identical to

([0-9])+"."([0-9])∗

and matches one-or-more digits followed by a ’.’ followed by zero-or-more digits.

The rules section of the flex input contains a series of rules of the form:

pattern action

where the pattern must be unindented and the action must begin on the same line.

See below for a further description of patterns and actions.

Finally, the user code section is simply copied to lex.yy.c verbatim. It is used for companion routines
which call or are called by the scanner. The presence of this section is optional; if it is missing, the second
%% in the input file may be skipped, too.

In the definitions and rules sections, any indented text or text enclosed in %{ and %} is copied verbatim to
the output (with the %{}’s removed). The %{}’s must appear unindented on lines by themselves.

In the rules section, any indented or %{} text appearing before the first rule may be used to declare vari-
ables which are local to the scanning routine and (after the declarations) code which is to be executed
whenever the scanning routine is entered. Other indented or %{} text in the rule section is still copied to
the output, but its meaning is not well-defined and it may well cause compile-time errors (this feature is
present for POSIX compliance; see below for other such features).

In the definitions section (but not in the rules section), an unindented comment (i.e., a line beginning with
"/∗ ") is also copied verbatim to the output up to the next "∗ /".

PATTERNS
The patterns in the input are written using an extended set of regular expressions. These are:

x match the character ’x’
. any character except newline

Version 2.4 November 1993 3

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

[xyz] a "character class"; in this case, the pattern
matches either an ’x’, a ’y’, or a ’z’

[abj-oZ] a "character class" with a range in it; matches
an ’a’, a ’b’, any letter from ’j’ through ’o’,
or a ’Z’

[ˆA-Z] a "negated character class", i.e., any character
but those in the class. In this case, any
character EXCEPT an uppercase letter.

[ˆA-Z\n] any character EXCEPT an uppercase letter or
a newline

r∗ zero or more r’s, where r is any regular expression
r+ one or more r’s
r? zero or one r’s (that is, "an optional r")
r{2,5} anywhere from two to five r’s
r{2,} two or more r’s
r{4} exactly 4 r’s
{name} the expansion of the "name" definition

(see above)
"[xyz]\"foo"

the literal string: [xyz]"foo
\X if X is an ’a’, ’b’, ’f’, ’n’, ’r’, ’t’, or ’v’,

then the ANSI-C interpretation of \x.
Otherwise, a literal ’X’ (used to escape
operators such as ’∗ ’)

\123 the character with octal value 123
\x2a the character with hexadecimal value 2a
(r) match an r; parentheses are used to override

precedence (see below)

rs the regular expression r followed by the
regular expression s; called "concatenation"

r|s either an r or an s

r/s an r but only if it is followed by an s. The
s is not part of the matched text. This type
of pattern is called as "trailing context".

ˆr an r, but only at the beginning of a line
r$ an r, but only at the end of a line. Equivalent

to "r/\n".

<s>r an r, but only in start condition s (see
below for discussion of start conditions)

<s1,s2,s3>r
same, but in any of start conditions s1,
s2, or s3

<∗ >r an r in any start condition, even an exclusive one.

Version 2.4 November 1993 4

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

<<EOF>> an end-of-file
<s1,s2><<EOF>>

an end-of-file when in start condition s1 or s2

Note that inside of a character class, all regular expression operators lose their special meaning except
escape (’\’) and the character class operators, ’-’, ’]’, and, at the beginning of the class, ’ˆ’.

The regular expressions listed above are grouped according to precedence, from highest precedence at the
top to lowest at the bottom. Those grouped together have equal precedence. For example,

foo|bar∗

is the same as

(foo)|(ba(r∗))

since the ’∗ ’ operator has higher precedence than concatenation, and concatenation higher than alternation
(’|’). This pattern therefore matches either the string "foo" or the string "ba" followed by zero-or-more r’s.
To match "foo" or zero-or-more "bar"’s, use:

foo|(bar)∗

and to match zero-or-more "foo"’s-or-"bar"’s:

(foo|bar)∗

Some notes on patterns:

- A negated character class such as the example "[ˆA-Z]" above will match a newline unless "\n" (or
an equivalent escape sequence) is one of the characters explicitly present in the negated character
class (e.g., "[ˆA-Z\n]"). This is unlike how many other regular expression tools treat negated
character classes, but unfortunately the inconsistency is historically entrenched. Matching new-
lines means that a pattern like [ˆ"]∗ can match the entire input unless there’s another quote in the
input.

- A rule can have at most one instance of trailing context (the ’/’ operator or the ’$’ operator). The
start condition, ’ˆ’, and "<<EOF>>" patterns can only occur at the beginning of a pattern, and, as
well as with ’/’ and ’$’, cannot be grouped inside parentheses. A ’ˆ’ which does not occur at the
beginning of a rule or a ’$’ which does not occur at the end of a rule loses its special properties
and is treated as a normal character.

The following are illegal:

foo/bar$
<sc1>foo<sc2>bar

Note that the first of these, can be written "foo/bar\n".

The following will result in ’$’ or ’ˆ’ being treated as a normal character:

foo|(bar$)
foo|̂ bar

If what’s wanted is a "foo" or a bar-followed-by-a-newline, the following could be used (the spe-
cial ’|’ action is explained below):

Version 2.4 November 1993 5

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

foo |
bar$ /∗ action goes here ∗ /

A similar trick will work for matching a foo or a bar-at-the-beginning-of-a-line.

HOW THE INPUT IS MATCHED
When the generated scanner is run, it analyzes its input looking for strings which match any of its patterns.
If it finds more than one match, it takes the one matching the most text (for trailing context rules, this
includes the length of the trailing part, even though it will then be returned to the input). If it finds two or
more matches of the same length, the rule listed first in the flex input file is chosen.

Once the match is determined, the text corresponding to the match (called the token) is made available in
the global character pointer yytext, and its length in the global integer yyleng. The action corresponding to
the matched pattern is then executed (a more detailed description of actions follows), and then the remain-
ing input is scanned for another match.

If no match is found, then the default rule is executed: the next character in the input is considered matched
and copied to the standard output. Thus, the simplest legal flex input is:

%%

which generates a scanner that simply copies its input (one character at a time) to its output.

Note that yytext can be defined in two different ways: either as a character pointer or as a character array.
You can control which definition flex uses by including one of the special directives %pointer or %array
in the first (definitions) section of your flex input. The default is %pointer, unless you use the -l lex com-
patibility option, in which case yytext will be an array. The advantage of using %pointer is substantially
faster scanning and no buffer overflow when matching very large tokens (unless you run out of dynamic
memory). The disadvantage is that you are restricted in how your actions can modify yytext (see the next
section), and calls to the input() and unput() functions destroy the present contents of yytext, which can
be a considerable porting headache when moving between different lex versions.

The advantage of %array is that you can then modify yytext to your heart’s content, and calls to input()
and unput() do not destroy yytext (see below). Furthermore, existing lex programs sometimes access
yytext externally using declarations of the form:

extern char yytext[];
This definition is erroneous when used with %pointer, but correct for %array.

%array defines yytext to be an array of YYLMAX characters, which defaults to a fairly large value. You
can change the size by simply #define’ing YYLMAX to a different value in the first section of your flex
input. As mentioned above, with %pointer yytext grows dynamically to accomodate large tokens. While
this means your %pointer scanner can accomodate very large tokens (such as matching entire blocks of
comments), bear in mind that each time the scanner must resize yytext it also must rescan the entire token
from the beginning, so matching such tokens can prove slow. yytext presently does not dynamically grow
if a call to unput() results in too much text being pushed back; instead, a run-time error results.

Also note that you cannot use %array with C++ scanner classes (the −−+ option; see below).

ACTIONS
Each pattern in a rule has a corresponding action, which can be any arbitrary C statement. The pattern
ends at the first non-escaped whitespace character; the remainder of the line is its action. If the action is
empty, then when the pattern is matched the input token is simply discarded. For example, here is the
specification for a program which deletes all occurrences of "zap me" from its input:

%%
"zap me"

(It will copy all other characters in the input to the output since they will be matched by the default rule.)

Version 2.4 November 1993 6

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

Here is a program which compresses multiple blanks and tabs down to a single blank, and throws away
whitespace found at the end of a line:

%%
[\t]+ putchar(’ ’);
[\t]+$ /∗ ignore this token ∗ /

If the action contains a ’{’, then the action spans till the balancing ’}’ is found, and the action may cross
multiple lines. flex knows about C strings and comments and won’t be fooled by braces found within them,
but also allows actions to begin with %{ and will consider the action to be all the text up to the next %}
(regardless of ordinary braces inside the action).

An action consisting solely of a vertical bar (’|’) means "same as the action for the next rule." See below
for an illustration.

Actions can include arbitrary C code, including return statements to return a value to whatever routine
called yylex(). Each time yylex() is called it continues processing tokens from where it last left off until it
either reaches the end of the file or executes a return.

Actions are free to modify yytext except for lengthening it (adding characters to its end--these will
overwrite later characters in the input stream). Modifying the final character of yytext may alter whether
when scanning resumes rules anchored with ’ˆ’ are active. Specifically, changing the final character of
yytext to a newline will activate such rules on the next scan, and changing it to anything else will deac-
tivate the rules. Users should not rely on this behavior being present in future releases. Finally, note that
none of this paragraph applies when using %array (see above).

Actions are free to modify yyleng except they should not do so if the action also includes use of yymore()
(see below).

There are a number of special directives which can be included within an action:

- ECHO copies yytext to the scanner’s output.

- BEGIN followed by the name of a start condition places the scanner in the corresponding start
condition (see below).

- REJECT directs the scanner to proceed on to the "second best" rule which matched the input (or
a prefix of the input). The rule is chosen as described above in "How the Input is Matched", and
yytext and yyleng set up appropriately. It may either be one which matched as much text as the
originally chosen rule but came later in the flex input file, or one which matched less text. For
example, the following will both count the words in the input and call the routine special() when-
ever "frob" is seen:

int word_count = 0;
%%

frob special(); REJECT;
[ˆ \t\n]+ ++word_count;

Without the REJECT, any "frob"’s in the input would not be counted as words, since the scanner
normally executes only one action per token. Multiple REJECT’s are allowed, each one finding
the next best choice to the currently active rule. For example, when the following scanner scans
the token "abcd", it will write "abcdabcaba" to the output:

%%
a |
ab |
abc |

Version 2.4 November 1993 7

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

abcd ECHO; REJECT;
.|\n /∗ eat up any unmatched character ∗ /

(The first three rules share the fourth’s action since they use the special ’|’ action.) REJECT is a
particularly expensive feature in terms scanner performance; if it is used in any of the scanner’s
actions it will slow down all of the scanner’s matching. Furthermore, REJECT cannot be used
with the -Cf or -CF options (see below).

Note also that unlike the other special actions, REJECT is a branch; code immediately following
it in the action will not be executed.

- yymore() tells the scanner that the next time it matches a rule, the corresponding token should be
appended onto the current value of yytext rather than replacing it. For example, given the input
"mega-kludge" the following will write "mega-mega-kludge" to the output:

%%
mega- ECHO; yymore();
kludge ECHO;

First "mega-" is matched and echoed to the output. Then "kludge" is matched, but the previous
"mega-" is still hanging around at the beginning of yytext so the ECHO for the "kludge" rule will
actually write "mega-kludge". The presence of yymore() in the scanner’s action entails a minor
performance penalty in the scanner’s matching speed.

- yyless(n) returns all but the first n characters of the current token back to the input stream, where
they will be rescanned when the scanner looks for the next match. yytext and yyleng are adjusted
appropriately (e.g., yyleng will now be equal to n). For example, on the input "foobar" the fol-
lowing will write out "foobarbar":

%%
foobar ECHO; yyless(3);
[a-z]+ ECHO;

An argument of 0 to yyless will cause the entire current input string to be scanned again. Unless
you’ve changed how the scanner will subsequently process its input (using BEGIN, for example),
this will result in an endless loop.

Note that yyless is a macro and can only be used in the flex input file, not from other source files.

- unput(c) puts the character c back onto the input stream. It will be the next character scanned.
The following action will take the current token and cause it to be rescanned enclosed in
parentheses.

{
int i;
unput(’)’);
for (i = yyleng - 1; i >= 0; --i)

unput(yytext[i]);
unput(’(’);
}

Note that since each unput() puts the given character back at the beginning of the input stream,
pushing back strings must be done back-to-front. Also note that you cannot put back EOF to
attempt to mark the input stream with an end-of-file.

- input() reads the next character from the input stream. For example, the following is one way to
eat up C comments:

Version 2.4 November 1993 8

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

%%
"/∗ " {

register int c;

for (; ;)
{
while ((c = input()) != ’∗ ’ &&

c != EOF)
; /∗ eat up text of comment ∗ /

if (c == ’∗ ’)
{
while ((c = input()) == ’∗ ’)

;
if (c == ’/’)

break; /∗ found the end ∗ /
}

if (c == EOF)
{
error("EOF in comment");
break;
}

}
}

(Note that if the scanner is compiled using C++, then input() is instead referred to as yyinput(), in
order to avoid a name clash with the C++ stream by the name of input.)

- yyterminate() can be used in lieu of a return statement in an action. It terminates the scanner and
returns a 0 to the scanner’s caller, indicating "all done". By default, yyterminate() is also called
when an end-of-file is encountered. It is a macro and may be redefined.

THE GENERATED SCANNER
The output of flex is the file lex.yy.c, which contains the scanning routine yylex(), a number of tables used
by it for matching tokens, and a number of auxiliary routines and macros. By default, yylex() is declared
as follows:

int yylex()
{
... various definitions and the actions in here ...
}

(If your environment supports function prototypes, then it will be "int yylex(void)".) This definition may
be changed by defining the "YY_DECL" macro. For example, you could use:

#define YY_DECL float lexscan(a, b) float a, b;

to give the scanning routine the name lexscan, returning a float, and taking two floats as arguments. Note
that if you give arguments to the scanning routine using a K&R-style/non-prototyped function declaration,
you must terminate the definition with a semi-colon (;).

Whenever yylex() is called, it scans tokens from the global input file yyin (which defaults to stdin). It con-
tinues until it either reaches an end-of-file (at which point it returns the value 0) or one of its actions exe-
cutes a return statement.

Version 2.4 November 1993 9

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

If the scanner reaches an end-of-file, subsequent calls are undefined unless either yyin is pointed at a new
input file (in which case scanning continues from that file), or yyrestart() is called. yyrestart() takes one
argument, a FILE ∗∗ pointer, and initializes yyin for scanning from that file. Essentially there is no differ-
ence between just assigning yyin to a new input file or using yyrestart() to do so; the latter is available for
compatibility with previous versions of flex, and because it can be used to switch input files in the middle
of scanning. It can also be used to throw away the current input buffer, by calling it with an argument of
yyin.

If yylex() stops scanning due to executing a return statement in one of the actions, the scanner may then be
called again and it will resume scanning where it left off.

By default (and for purposes of efficiency), the scanner uses block-reads rather than simple getc() calls to
read characters from yyin. The nature of how it gets its input can be controlled by defining the YY_INPUT
macro. YY_INPUT’s calling sequence is "YY_INPUT(buf,result,max_size)". Its action is to place up to
max_size characters in the character array buf and return in the integer variable result either the number of
characters read or the constant YY_NULL (0 on Unix systems) to indicate EOF. The default YY_INPUT
reads from the global file-pointer "yyin".

A sample definition of YY_INPUT (in the definitions section of the input file):

%{
#define YY_INPUT(buf,result,max_size) \

{ \
int c = getchar(); \
result = (c == EOF) ? YY_NULL : (buf[0] = c, 1); \
}

%}

This definition will change the input processing to occur one character at a time.

You also can add in things like keeping track of the input line number this way; but don’t expect your
scanner to go very fast.

When the scanner receives an end-of-file indication from YY_INPUT, it then checks the yywrap() func-
tion. If yywrap() returns false (zero), then it is assumed that the function has gone ahead and set up yyin to
point to another input file, and scanning continues. If it returns true (non-zero), then the scanner ter-
minates, returning 0 to its caller.

The default yywrap() always returns 1.

The scanner writes its ECHO output to the yyout global (default, stdout), which may be redefined by the
user simply by assigning it to some other FILE pointer.

START CONDITIONS
flex provides a mechanism for conditionally activating rules. Any rule whose pattern is prefixed with
"<sc>" will only be active when the scanner is in the start condition named "sc". For example,

<STRING>[ˆ"]∗ { /∗ eat up the string body ... ∗ /
...
}

will be active only when the scanner is in the "STRING" start condition, and

<INITIAL,STRING,QUOTE>\. { /∗ handle an escape ... ∗ /
...
}

will be active only when the current start condition is either "INITIAL", "STRING", or "QUOTE".

Version 2.4 November 1993 10

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

Start conditions are declared in the definitions (first) section of the input using unindented lines beginning
with either %s or %x followed by a list of names. The former declares inclusive start conditions, the latter
exclusive start conditions. A start condition is activated using the BEGIN action. Until the next BEGIN
action is executed, rules with the given start condition will be active and rules with other start conditions
will be inactive. If the start condition is inclusive, then rules with no start conditions at all will also be
active. If it is exclusive, then only rules qualified with the start condition will be active. A set of rules con-
tingent on the same exclusive start condition describe a scanner which is independent of any of the other
rules in the flex input. Because of this, exclusive start conditions make it easy to specify "mini-scanners"
which scan portions of the input that are syntactically different from the rest (e.g., comments).

If the distinction between inclusive and exclusive start conditions is still a little vague, here’s a simple
example illustrating the connection between the two. The set of rules:

%s example
%%
<example>foo /∗ do something ∗ /

is equivalent to

%x example
%%
<INITIAL,example>foo /∗ do something ∗ /

Also note that the special start-condition specifier <∗∗ > matches every start condition. Thus, the above
example could also have been written;

%x example
%%
<∗ >foo /∗ do something ∗ /

The default rule (to ECHO any unmatched character) remains active in start conditions.

BEGIN(0) returns to the original state where only the rules with no start conditions are active. This state
can also be referred to as the start-condition "INITIAL", so BEGIN(INITIAL) is equivalent to BEGIN(0).
(The parentheses around the start condition name are not required but are considered good style.)

BEGIN actions can also be given as indented code at the beginning of the rules section. For example, the
following will cause the scanner to enter the "SPECIAL" start condition whenever yylex() is called and the
global variable enter_special is true:

int enter_special;

%x SPECIAL
%%

if (enter_special)
BEGIN(SPECIAL);

<SPECIAL>blahblahblah
...more rules follow...

To illustrate the uses of start conditions, here is a scanner which provides two different interpretations of a
string like "123.456". By default it will treat it as as three tokens, the integer "123", a dot (’.’), and the
integer "456". But if the string is preceded earlier in the line by the string "expect-floats" it will treat it as a
single token, the floating-point number 123.456:

Version 2.4 November 1993 11

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

%{
#include <math.h>
%}
%s expect

%%
expect-floats BEGIN(expect);

<expect>[0-9]+"."[0-9]+ {
printf("found a float, = %f\n",

atof(yytext));
}

<expect>\n {
/∗ that’s the end of the line, so
∗ we need another "expect-number"
∗ before we’ll recognize any more
∗ numbers
∗ /
BEGIN(INITIAL);
}

[0-9]+ {
printf("found an integer, = %d\n",

atoi(yytext));
}

"." printf("found a dot\n");

Here is a scanner which recognizes (and discards) C comments while maintaining a count of the current
input line.

%x comment
%%

int line_num = 1;

"/∗ " BEGIN(comment);

<comment>[ˆ∗ \n]∗ /∗ eat anything that’s not a ’∗ ’ ∗ /
<comment>"∗ "+[ˆ∗ /\n]∗ /∗ eat up ’∗ ’s not followed by ’/’s ∗ /
<comment>\n ++line_num;
<comment>"∗ "+"/" BEGIN(INITIAL);

This scanner goes to a bit of trouble to match as much text as possible with each rule. In general, when
attempting to write a high-speed scanner try to match as much possible in each rule, as it’s a big win.

Note that start-conditions names are really integer values and can be stored as such. Thus, the above could
be extended in the following fashion:

%x comment foo
%%

int line_num = 1;
int comment_caller;

"/∗ " {

Version 2.4 November 1993 12

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

comment_caller = INITIAL;
BEGIN(comment);
}

...

<foo>"/∗ " {
comment_caller = foo;
BEGIN(comment);
}

<comment>[ˆ∗ \n]∗ /∗ eat anything that’s not a ’∗ ’ ∗ /
<comment>"∗ "+[ˆ∗ /\n]∗ /∗ eat up ’∗ ’s not followed by ’/’s ∗ /
<comment>\n ++line_num;
<comment>"∗ "+"/" BEGIN(comment_caller);

Furthermore, you can access the current start condition using the integer-valued YY_START macro. For
example, the above assignments to comment_caller could instead be written

comment_caller = YY_START;

Note that start conditions do not have their own name-space; %s’s and %x’s declare names in the same
fashion as #define’s.

Finally, here’s an example of how to match C-style quoted strings using exclusive start conditions, includ-
ing expanded escape sequences (but not including checking for a string that’s too long):

%x str

%%
char string_buf[MAX_STR_CONST];
char ∗ string_buf_ptr;

\" string_buf_ptr = string_buf; BEGIN(str);

<str>\" { /∗ saw closing quote - all done ∗ /
BEGIN(INITIAL);
∗ string_buf_ptr = ’\0’;
/∗ return string constant token type and
∗ value to parser
∗ /
}

<str>\n {
/∗ error - unterminated string constant ∗ /
/∗ generate error message ∗ /
}

<str>\\[0-7]{1,3} {
/∗ octal escape sequence ∗ /
int result;

(void) sscanf(yytext + 1, "%o", &result);

Version 2.4 November 1993 13

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

if (result > 0xff)
/∗ error, constant is out-of-bounds ∗ /

∗ string_buf_ptr++ = result;
}

<str>\\[0-9]+ {
/∗ generate error - bad escape sequence; something
∗ like ’\48’ or ’\0777777’
∗ /
}

<str>\\n ∗ string_buf_ptr++ = ’\n’;
<str>\\t ∗ string_buf_ptr++ = ’\t’;
<str>\\r ∗ string_buf_ptr++ = ’\r’;
<str>\\b ∗ string_buf_ptr++ = ’\b’;
<str>\\f ∗ string_buf_ptr++ = ’\f’;

<str>\\(.|\n) ∗ string_buf_ptr++ = yytext[1];

<str>[ˆ\\\n\"]+ {
char ∗ yytext_ptr = yytext;

while (∗ yytext_ptr)
∗ string_buf_ptr++ = ∗ yytext_ptr++;

}

MULTIPLE INPUT BUFFERS
Some scanners (such as those which support "include" files) require reading from several input streams.
As flex scanners do a large amount of buffering, one cannot control where the next input will be read from
by simply writing a YY_INPUT which is sensitive to the scanning context. YY_INPUT is only called
when the scanner reaches the end of its buffer, which may be a long time after scanning a statement such as
an "include" which requires switching the input source.

To negotiate these sorts of problems, flex provides a mechanism for creating and switching between multi-
ple input buffers. An input buffer is created by using:

YY_BUFFER_STATE yy_create_buffer(FILE ∗ file, int size)

which takes a FILE pointer and a size and creates a buffer associated with the given file and large enough
to hold size characters (when in doubt, use YY_BUF_SIZE for the size). It returns a
YY_BUFFER_STATE handle, which may then be passed to other routines:

void yy_switch_to_buffer(YY_BUFFER_STATE new_buffer)

switches the scanner’s input buffer so subsequent tokens will come from new_buffer. Note that
yy_switch_to_buffer() may be used by yywrap() to set things up for continued scanning, instead of open-
ing a new file and pointing yyin at it.

void yy_delete_buffer(YY_BUFFER_STATE buffer)

is used to reclaim the storage associated with a buffer.

Version 2.4 November 1993 14

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

yy_new_buffer() is an alias for yy_create_buffer(), provided for compatibility with the C++ use of new
and delete for creating and destroying dynamic objects.

Finally, the YY_CURRENT_BUFFER macro returns a YY_BUFFER_STATE handle to the current
buffer.

Here is an example of using these features for writing a scanner which expands include files (the
<<EOF>> feature is discussed below):

/∗ the "incl" state is used for picking up the name
∗ of an include file
∗ /
%x incl

%{
#define MAX_INCLUDE_DEPTH 10
YY_BUFFER_STATE include_stack[MAX_INCLUDE_DEPTH];
int include_stack_ptr = 0;
%}

%%
include BEGIN(incl);

[a-z]+ ECHO;
[ˆa-z\n]∗ \n? ECHO;

<incl>[\t]∗ /∗ eat the whitespace ∗ /
<incl>[ˆ \t\n]+ { /∗ got the include file name ∗ /

if (include_stack_ptr >= MAX_INCLUDE_DEPTH)
{
fprintf(stderr, "Includes nested too deeply");
exit(1);
}

include_stack[include_stack_ptr++] =
YY_CURRENT_BUFFER;

yyin = fopen(yytext, "r");

if (! yyin)
error(...);

yy_switch_to_buffer(
yy_create_buffer(yyin, YY_BUF_SIZE));

BEGIN(INITIAL);
}

<<EOF>> {
if (--include_stack_ptr < 0)

{
yyterminate();
}

else

Version 2.4 November 1993 15

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

{
yy_delete_buffer(YY_CURRENT_BUFFER);
yy_switch_to_buffer(

include_stack[include_stack_ptr]);
}

}

END-OF-FILE RULES
The special rule "<<EOF>>" indicates actions which are to be taken when an end-of-file is encountered
and yywrap() returns non-zero (i.e., indicates no further files to process). The action must finish by doing
one of four things:

- assigning yyin to a new input file (in previous versions of flex, after doing the assignment you had
to call the special action YY_NEW_FILE; this is no longer necessary);

- executing a return statement;

- executing the special yyterminate() action;

- or, switching to a new buffer using yy_switch_to_buffer() as shown in the example above.

<<EOF>> rules may not be used with other patterns; they may only be qualified with a list of start condi-
tions. If an unqualified <<EOF>> rule is given, it applies to all start conditions which do not already have
<<EOF>> actions. To specify an <<EOF>> rule for only the initial start condition, use

<INITIAL><<EOF>>

These rules are useful for catching things like unclosed comments. An example:

%x quote
%%

...other rules for dealing with quotes...

<quote><<EOF>> {
error("unterminated quote");
yyterminate();
}

<<EOF>> {
if (∗ ++filelist)

yyin = fopen(∗ filelist, "r");
else

yyterminate();
}

MISCELLANEOUS MACROS
The macro YY_USER_ACTION can be defined to provide an action which is always executed prior to the
matched rule’s action. For example, it could be #define’d to call a routine to convert yytext to lower-case.

The macro YY_USER_INIT may be defined to provide an action which is always executed before the first
scan (and before the scanner’s internal initializations are done). For example, it could be used to call a rou-
tine to read in a data table or open a logging file.

In the generated scanner, the actions are all gathered in one large switch statement and separated using
YY_BREAK, which may be redefined. By default, it is simply a "break", to separate each rule’s action
from the following rule’s. Redefining YY_BREAK allows, for example, C++ users to #define
YY_BREAK to do nothing (while being very careful that every rule ends with a "break" or a "return"!) to

Version 2.4 November 1993 16

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

avoid suffering from unreachable statement warnings where because a rule’s action ends with "return", the
YY_BREAK is inaccessible.

INTERFACING WITH YACC
One of the main uses of flex is as a companion to the yacc parser-generator. yacc parsers expect to call a
routine named yylex() to find the next input token. The routine is supposed to return the type of the next
token as well as putting any associated value in the global yylval. To use flex with yacc, one specifies the
−−d option to yacc to instruct it to generate the file y.tab.h containing definitions of all the %tokens appear-
ing in the yacc input. This file is then included in the flex scanner. For example, if one of the tokens is
"TOK_NUMBER", part of the scanner might look like:

%{
#include "y.tab.h"
%}

%%

[0-9]+ yylval = atoi(yytext); return TOK_NUMBER;

OPTIONS
flex has the following options:

−−b Generate backing-up information to lex.backup. This is a list of scanner states which require back-
ing up and the input characters on which they do so. By adding rules one can remove backing-up
states. If all backing-up states are eliminated and −−Cf or −−CF is used, the generated scanner will
run faster (see the −−p flag). Only users who wish to squeeze every last cycle out of their scanners
need worry about this option. (See the section on Performance Considerations below.)

−−c is a do-nothing, deprecated option included for POSIX compliance.

NOTE: in previous releases of flex −−c specified table-compression options. This functionality is
now given by the −−C flag. To ease the the impact of this change, when flex encounters −−c, it
currently issues a warning message and assumes that −−C was desired instead. In the future this
"promotion" of −−c to −−C will go away in the name of full POSIX compliance (unless the POSIX
meaning is removed first).

−−d makes the generated scanner run in debug mode. Whenever a pattern is recognized and the global
yy_flex_debug is non-zero (which is the default), the scanner will write to stderr a line of the
form:

--accepting rule at line 53 ("the matched text")

The line number refers to the location of the rule in the file defining the scanner (i.e., the file that
was fed to flex). Messages are also generated when the scanner backs up, accepts the default rule,
reaches the end of its input buffer (or encounters a NUL; at this point, the two look the same as far
as the scanner’s concerned), or reaches an end-of-file.

−−f specifies fast scanner. No table compression is done and stdio is bypassed. The result is large but
fast. This option is equivalent to −−Cfr (see below).

−−h generates a "help" summary of flex’s options to stderr and then exits.

−−i instructs flex to generate a case-insensitive scanner. The case of letters given in the flex input pat-
terns will be ignored, and tokens in the input will be matched regardless of case. The matched
text given in yytext will have the preserved case (i.e., it will not be folded).

−−l turns on maximum compatibility with the original AT&T lex implementation. Note that this does
not mean full compatibility. Use of this option costs a considerable amount of performance, and it
cannot be used with the −−+, -f, -F, -Cf, or -CF options. For details on the compatibilities it

Version 2.4 November 1993 17

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

provides, see the section "Incompatibilities With Lex And POSIX" below.

−−n is another do-nothing, deprecated option included only for POSIX compliance.

−−p generates a performance report to stderr. The report consists of comments regarding features of
the flex input file which will cause a serious loss of performance in the resulting scanner. If you
give the flag twice, you will also get comments regarding features that lead to minor performance
losses.

Note that the use of REJECT and variable trailing context (see the Bugs section in flex(1)) entails
a substantial performance penalty; use of yymore(), the ˆ operator, and the −−I flag entail minor
performance penalties.

−−s causes the default rule (that unmatched scanner input is echoed to stdout) to be suppressed. If the
scanner encounters input that does not match any of its rules, it aborts with an error. This option
is useful for finding holes in a scanner’s rule set.

−−t instructs flex to write the scanner it generates to standard output instead of lex.yy.c.

−−v specifies that flex should write to stderr a summary of statistics regarding the scanner it generates.
Most of the statistics are meaningless to the casual flex user, but the first line identifies the version
of flex (same as reported by −−V), and the next line the flags used when generating the scanner,
including those that are on by default.

−−w suppresses warning messages.

−−B instructs flex to generate a batch scanner, the opposite of interactive scanners generated by −−I (see
below). In general, you use −−B when you are certain that your scanner will never be used interac-
tively, and you want to squeeze a little more performance out of it. If your goal is instead to
squeeze out a lot more performance, you should be using the −−Cf or −−CF options (discussed
below), which turn on −−B automatically anyway.

−−F specifies that the fast scanner table representation should be used (and stdio bypassed). This
representation is about as fast as the full table representation (-f), and for some sets of patterns will
be considerably smaller (and for others, larger). In general, if the pattern set contains both "key-
words" and a catch-all, "identifier" rule, such as in the set:

"case" return TOK_CASE;
"switch" return TOK_SWITCH;
...
"default" return TOK_DEFAULT;
[a-z]+ return TOK_ID;

then you’re better off using the full table representation. If only the "identifier" rule is present and
you then use a hash table or some such to detect the keywords, you’re better off using -F.

This option is equivalent to −−CFr (see below). It cannot be used with −−+.

−−I instructs flex to generate an interactive scanner. An interactive scanner is one that only looks
ahead to decide what token has been matched if it absolutely must. It turns out that always look-
ing one extra character ahead, even if the scanner has already seen enough text to disambiguate
the current token, is a bit faster than only looking ahead when necessary. But scanners that
always look ahead give dreadful interactive performance; for example, when a user types a new-
line, it is not recognized as a newline token until they enter another token, which often means typ-
ing in another whole line.

Flex scanners default to interactive unless you use the −−Cf or −−CF table-compression options (see
below). That’s because if you’re looking for high-performance you should be using one of these
options, so if you didn’t, flex assumes you’d rather trade off a bit of run-time performance for
intuitive interactive behavior. Note also that you cannot use −−I in conjunction with −−Cf or −−CF.
Thus, this option is not really needed; it is on by default for all those cases in which it is allowed.

Version 2.4 November 1993 18

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

You can force a scanner to not be interactive by using −−B (see above).

−−L instructs flex not to generate #line directives. Without this option, flex peppers the generated
scanner with #line directives so error messages in the actions will be correctly located with respect
to the original flex input file, and not to the fairly meaningless line numbers of lex.yy.c. (Unfor-
tunately flex does not presently generate the necessary directives to "retarget" the line numbers for
those parts of lex.yy.c which it generated. So if there is an error in the generated code, a meaning-
less line number is reported.)

−−T makes flex run in trace mode. It will generate a lot of messages to stderr concerning the form of
the input and the resultant non-deterministic and deterministic finite automata. This option is
mostly for use in maintaining flex.

−−V prints the version number to stderr and exits.

−−7 instructs flex to generate a 7-bit scanner, i.e., one which can only recognized 7-bit characters in its
input. The advantage of using −−7 is that the scanner’s tables can be up to half the size of those
generated using the −−8 option (see below). The disadvantage is that such scanners often hang or
crash if their input contains an 8-bit character.

Note, however, that unless you generate your scanner using the −−Cf or −−CF table compression
options, use of −−7 will save only a small amount of table space, and make your scanner consider-
ably less portable. Flex’s default behavior is to generate an 8-bit scanner unless you use the −−Cf
or −−CF, in which case flex defaults to generating 7-bit scanners unless your site was always
configured to generate 8-bit scanners (as will often be the case with non-USA sites). You can tell
whether flex generated a 7-bit or an 8-bit scanner by inspecting the flag summary in the −−v output
as described above.

Note that if you use −−Cfe or −−CFe (those table compression options, but also using equivalence
classes as discussed see below), flex still defaults to generating an 8-bit scanner, since usually with
these compression options full 8-bit tables are not much more expensive than 7-bit tables.

−−8 instructs flex to generate an 8-bit scanner, i.e., one which can recognize 8-bit characters. This flag
is only needed for scanners generated using −−Cf or −−CF, as otherwise flex defaults to generating
an 8-bit scanner anyway.

See the discussion of −−7 above for flex’s default behavior and the tradeoffs between 7-bit and 8-
bit scanners.

−−+ specifies that you want flex to generate a C++ scanner class. See the section on Generating C++
Scanners below for details.

−−C[aefFmr]
controls the degree of table compression and, more generally, trade-offs between small scanners
and fast scanners.

−−Ca ("align") instructs flex to trade off larger tables in the generated scanner for faster perfor-
mance because the elements of the tables are better aligned for memory access and computation.
On some RISC architectures, fetching and manipulating longwords is more efficient than with
smaller-sized datums such as shortwords. This option can double the size of the tables used by
your scanner.

−−Ce directs flex to construct equivalence classes, i.e., sets of characters which have identical lexi-
cal properties (for example, if the only appearance of digits in the flex input is in the character
class "[0-9]" then the digits ’0’, ’1’, ..., ’9’ will all be put in the same equivalence class).
Equivalence classes usually give dramatic reductions in the final table/object file sizes (typically a
factor of 2-5) and are pretty cheap performance-wise (one array look-up per character scanned).

−−Cf specifies that the full scanner tables should be generated - flex should not compress the tables
by taking advantages of similar transition functions for different states.

Version 2.4 November 1993 19

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

−−CF specifies that the alternate fast scanner representation (described above under the −−F flag)
should be used. This option cannot be used with −−+.

−−Cm directs flex to construct meta-equivalence classes, which are sets of equivalence classes (or
characters, if equivalence classes are not being used) that are commonly used together. Meta-
equivalence classes are often a big win when using compressed tables, but they have a moderate
performance impact (one or two "if" tests and one array look-up per character scanned).

−−Cr causes the generated scanner to bypass use of the standard I/O library (stdio) for input.
Instead of calling fread() or getc(), the scanner will use the read() system call, resulting in a per-
formance gain which varies from system to system, but in general is probably negligible unless
you are also using −−Cf or −−CF. Using −−Cr can cause strange behavior if, for example, you read
from yyin using stdio prior to calling the scanner (because the scanner will miss whatever text
your previous reads left in the stdio input buffer).

−−Cr has no effect if you define YY_INPUT (see The Generated Scanner above).

A lone −−C specifies that the scanner tables should be compressed but neither equivalence classes
nor meta-equivalence classes should be used.

The options −−Cf or −−CF and −−Cm do not make sense together - there is no opportunity for meta-
equivalence classes if the table is not being compressed. Otherwise the options may be freely
mixed, and are cumulative.

The default setting is −−Cem, which specifies that flex should generate equivalence classes and
meta-equivalence classes. This setting provides the highest degree of table compression. You can
trade off faster-executing scanners at the cost of larger tables with the following generally being
true:

slowest & smallest
-Cem
-Cm
-Ce
-C
-C{f,F}e
-C{f,F}
-C{f,F}a

fastest & largest

Note that scanners with the smallest tables are usually generated and compiled the quickest, so
during development you will usually want to use the default, maximal compression.

−−Cfe is often a good compromise between speed and size for production scanners.

−−Pprefix
changes the default yy prefix used by flex for all globally-visible variable and function names to
instead be prefix. For example, −−Pfoo changes the name of yytext to footext. It also changes the
name of the default output file from lex.yy.c to lex.foo.c. Here are all of the names affected:

yyFlexLexer
yy_create_buffer
yy_delete_buffer
yy_flex_debug
yy_init_buffer
yy_load_buffer_state
yy_switch_to_buffer
yyin
yyleng

Version 2.4 November 1993 20

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

yylex
yyout
yyrestart
yytext
yywrap

Within your scanner itself, you can still refer to the global variables and functions using either
version of their name; but eternally, they have the modified name.

This option lets you easily link together multiple flex programs into the same executable. Note,
though, that using this option also renames yywrap(), so you now must provide your own
(appropriately-named) version of the routine for your scanner, as linking with −−lfl no longer pro-
vides one for you by default.

−−Sskeleton_file
overrides the default skeleton file from which flex constructs its scanners. You’ll never need this
option unless you are doing flex maintenance or development.

PERFORMANCE CONSIDERATIONS
The main design goal of flex is that it generate high-performance scanners. It has been optimized for deal-
ing well with large sets of rules. Aside from the effects on scanner speed of the table compression −−C
options outlined above, there are a number of options/actions which degrade performance. These are, from
most expensive to least:

REJECT

pattern sets that require backing up
arbitrary trailing context

yymore()
’ˆ’ beginning-of-line operator

with the first three all being quite expensive and the last two being quite cheap. Note also that unput() is
implemented as a routine call that potentially does quite a bit of work, while yyless() is a quite-cheap
macro; so if just putting back some excess text you scanned, use yyless().

REJECT should be avoided at all costs when performance is important. It is a particularly expensive
option.

Getting rid of backing up is messy and often may be an enormous amount of work for a complicated
scanner. In principal, one begins by using the −−b flag to generate a lex.backup file. For example, on the
input

%%
foo return TOK_KEYWORD;
foobar return TOK_KEYWORD;

the file looks like:

State #6 is non-accepting -
associated rule line numbers:

2 3
out-transitions: [o]
jam-transitions: EOF [\001-n p-\177]

State #8 is non-accepting -
associated rule line numbers:

Version 2.4 November 1993 21

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

3
out-transitions: [a]
jam-transitions: EOF [\001-‘ b-\177]

State #9 is non-accepting -
associated rule line numbers:

3
out-transitions: [r]
jam-transitions: EOF [\001-q s-\177]

Compressed tables always back up.

The first few lines tell us that there’s a scanner state in which it can make a transition on an ’o’ but not on
any other character, and that in that state the currently scanned text does not match any rule. The state
occurs when trying to match the rules found at lines 2 and 3 in the input file. If the scanner is in that state
and then reads something other than an ’o’, it will have to back up to find a rule which is matched. With a
bit of headscratching one can see that this must be the state it’s in when it has seen "fo". When this has
happened, if anything other than another ’o’ is seen, the scanner will have to back up to simply match the
’f’ (by the default rule).

The comment regarding State #8 indicates there’s a problem when "foob" has been scanned. Indeed, on
any character other than an ’a’, the scanner will have to back up to accept "foo". Similarly, the comment
for State #9 concerns when "fooba" has been scanned and an ’r’ does not follow.

The final comment reminds us that there’s no point going to all the trouble of removing backing up from
the rules unless we’re using −−Cf or −−CF, since there’s no performance gain doing so with compressed
scanners.

The way to remove the backing up is to add "error" rules:

%%
foo return TOK_KEYWORD;
foobar return TOK_KEYWORD;

fooba |
foob |
fo {

/∗ false alarm, not really a keyword ∗ /
return TOK_ID;
}

Eliminating backing up among a list of keywords can also be done using a "catch-all" rule:

%%
foo return TOK_KEYWORD;
foobar return TOK_KEYWORD;

[a-z]+ return TOK_ID;

This is usually the best solution when appropriate.

Backing up messages tend to cascade. With a complicated set of rules it’s not uncommon to get hundreds
of messages. If one can decipher them, though, it often only takes a dozen or so rules to eliminate the
backing up (though it’s easy to make a mistake and have an error rule accidentally match a valid token. A
possible future flex feature will be to automatically add rules to eliminate backing up).

Version 2.4 November 1993 22

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

Variable trailing context (where both the leading and trailing parts do not have a fixed length) entails
almost the same performance loss as REJECT (i.e., substantial). So when possible a rule like:

%%
mouse|rat/(cat|dog) run();

is better written:

%%
mouse/cat|dog run();
rat/cat|dog run();

or as

%%
mouse|rat/cat run();
mouse|rat/dog run();

Note that here the special ’|’ action does not provide any savings, and can even make things worse (see

A final note regarding performance: as mentioned above in the section How the Input is Matched, dynami-
cally resizing yytext to accomodate huge tokens is a slow process because it presently requires that the
(huge) token be rescanned from the beginning. Thus if performance is vital, you should attempt to match
"large" quantities of text but not "huge" quantities, where the cutoff between the two is at about 8K
characters/token.

Another area where the user can increase a scanner’s performance (and one that’s easier to implement)
arises from the fact that the longer the tokens matched, the faster the scanner will run. This is because with
long tokens the processing of most input characters takes place in the (short) inner scanning loop, and does
not often have to go through the additional work of setting up the scanning environment (e.g., yytext) for
the action. Recall the scanner for C comments:

%x comment
%%

int line_num = 1;

"/∗ " BEGIN(comment);

<comment>[ˆ∗ \n]∗
<comment>"∗ "+[ˆ∗ /\n]∗
<comment>\n ++line_num;
<comment>"∗ "+"/" BEGIN(INITIAL);

This could be sped up by writing it as:

%x comment
%%

int line_num = 1;

"/∗ " BEGIN(comment);

<comment>[ˆ∗ \n]∗
<comment>[ˆ∗ \n]∗ \n ++line_num;
<comment>"∗ "+[ˆ∗ /\n]∗
<comment>"∗ "+[ˆ∗ /\n]∗ \n ++line_num;

Version 2.4 November 1993 23

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

<comment>"∗ "+"/" BEGIN(INITIAL);

Now instead of each newline requiring the processing of another action, recognizing the newlines is "distri-
buted" over the other rules to keep the matched text as long as possible. Note that adding rules does not
slow down the scanner! The speed of the scanner is independent of the number of rules or (modulo the
considerations given at the beginning of this section) how complicated the rules are with regard to opera-
tors such as ’∗ ’ and ’|’.

A final example in speeding up a scanner: suppose you want to scan through a file containing identifiers
and keywords, one per line and with no other extraneous characters, and recognize all the keywords. A
natural first approach is:

%%
asm |
auto |
break |
... etc ...
volatile |
while /∗ it’s a keyword ∗ /

.|\n /∗ it’s not a keyword ∗ /

To eliminate the back-tracking, introduce a catch-all rule:

%%
asm |
auto |
break |
... etc ...
volatile |
while /∗ it’s a keyword ∗ /

[a-z]+ |
.|\n /∗ it’s not a keyword ∗ /

Now, if it’s guaranteed that there’s exactly one word per line, then we can reduce the total number of
matches by a half by merging in the recognition of newlines with that of the other tokens:

%%
asm\n |
auto\n |
break\n |
... etc ...
volatile\n |
while\n /∗ it’s a keyword ∗ /

[a-z]+\n |
.|\n /∗ it’s not a keyword ∗ /

One has to be careful here, as we have now reintroduced backing up into the scanner. In particular, while
we know that there will never be any characters in the input stream other than letters or newlines, flex can’t
figure this out, and it will plan for possibly needing to back up when it has scanned a token like "auto" and
then the next character is something other than a newline or a letter. Previously it would then just match
the "auto" rule and be done, but now it has no "auto" rule, only a "auto\n" rule. To eliminate the possibility

Version 2.4 November 1993 24

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

of backing up, we could either duplicate all rules but without final newlines, or, since we never expect to
encounter such an input and therefore don’t how it’s classified, we can introduce one more catch-all rule,
this one which doesn’t include a newline:

%%
asm\n |
auto\n |
break\n |
... etc ...
volatile\n |
while\n /∗ it’s a keyword ∗ /

[a-z]+\n |
[a-z]+ |
.|\n /∗ it’s not a keyword ∗ /

Compiled with −−Cf, this is about as fast as one can get a flex scanner to go for this particular problem.

A final note: flex is slow when matching NUL’s, particularly when a token contains multiple NUL’s. It’s
best to write rules which match short amounts of text if it’s anticipated that the text will often include
NUL’s.

GENERATING C++ SCANNERS
flex provides two different ways to generate scanners for use with C++. The first way is to simply compile
a scanner generated by flex using a C++ compiler instead of a C compiler. You should not encounter any
compilations errors (please report any you find to the email address given in the Author section below).
You can then use C++ code in your rule actions instead of C code. Note that the default input source for
your scanner remains yyin, and default echoing is still done to yyout. Both of these remain FILE ∗ variables
and not C++ streams.

You can also use flex to generate a C++ scanner class, using the −−+ option, which is automatically specified
if the name of the flex executable ends in a ’+’, such as flex++. When using this option, flex defaults to
generating the scanner to the file lex.yy.cc instead of lex.yy.c. The generated scanner includes the header
file FlexLexer.h, which defines the interface to two C++ classes.

The first class, FlexLexer, provides an abstract base class defining the general scanner class interface. It
provides the following member functions:

const char∗∗ YYText()
returns the text of the most recently matched token, the equivalent of yytext.

int YYLeng()
returns the length of the most recently matched token, the equivalent of yyleng.

Also provided are member functions equivalent to yy_switch_to_buffer(), yy_create_buffer() (though the
first argument is an istream∗∗ object pointer and not a FILE∗∗), yy_delete_buffer(), and yyrestart() (again,
the first argument is a istream∗∗ object pointer).

The second class defined in FlexLexer.h is yyFlexLexer, which is derived from FlexLexer. It defines the
following additional member functions:

yyFlexLexer(istream∗∗ arg_yyin = 0, ostream∗∗ arg_yyout = 0)
constructs a yyFlexLexer object using the given streams for input and output. If not specified, the
streams default to cin and cout, respectively.

virtual int yylex()
performs the same role is yylex() does for ordinary flex scanners: it scans the input stream, con-
suming tokens, until a rule’s action returns a value.

Version 2.4 November 1993 25

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

In addition, yyFlexLexer defines the following protected virtual functions which you can redefine in
derived classes to tailor the scanner:

virtual int LexerInput(char∗∗ buf, int max_size)
reads up to max_size characters into buf and returns the number of characters read. To indicate
end-of-input, return 0 characters. Note that "interactive" scanners (see the −−B and −−I flags) define
the macro YY_INTERACTIVE. If you redefine LexerInput() and need to take different actions
depending on whether or not the scanner might be scanning an interactive input source, you can
test for the presence of this name via #ifdef.

virtual void LexerOutput(const char∗∗ buf, int size)
writes out size characters from the buffer buf, which, while NUL-terminated, may also contain
"internal" NUL’s if the scanner’s rules can match text with NUL’s in them.

virtual void LexerError(const char∗∗ msg)
reports a fatal error message. The default version of this function writes the message to the stream
cerr and exits.

Note that a yyFlexLexer object contains its entire scanning state. Thus you can use such objects to create
reentrant scanners. You can instantiate multiple instances of the same yyFlexLexer class, and you can also
combine multiple C++ scanner classes together in the same program using the −−P option discussed above.

Finally, note that the %array feature is not available to C++ scanner classes; you must use %pointer (the
default).

Here is an example of a simple C++ scanner:

// An example of using the flex C++ scanner class.

%{
int mylineno = 0;
%}

string \"[ˆ\n"]+\"

ws [\t]+

alpha [A-Za-z]
dig [0-9]
name ({alpha}|{dig}|\$)({alpha}|{dig}|[_.\-/$])∗
num1 [-+]?{dig}+\.?([eE][-+]?{dig}+)?
num2 [-+]?{dig}∗ \.{dig}+([eE][-+]?{dig}+)?
number {num1}|{num2}

%%

{ws} /∗ skip blanks and tabs ∗ /

"/∗ " {
int c;

while((c = yyinput()) != 0)
{
if(c == ’\n’)

++mylineno;

else if(c == ’∗ ’)

Version 2.4 November 1993 26

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

{
if((c = yyinput()) == ’/’)

break;
else

unput(c);
}

}
}

{number} cout << "number " << YYText() << ’\n’;

\n mylineno++;

{name} cout << "name " << YYText() << ’\n’;

{string} cout << "string " << YYText() << ’\n’;

%%

int main(int /∗ argc ∗ /, char∗∗ /∗ argv ∗ /)
{
FlexLexer∗ lexer = new yyFlexLexer;
while(lexer->yylex() != 0)

;
return 0;
}

IMPORTANT: the present form of the scanning class is experimental and may change considerably
between major releases.

INCOMPATIBILITIES WITH LEX AND POSIX
flex is a rewrite of the AT&T Unix lex tool (the two implementations do not share any code, though), with
some extensions and incompatibilities, both of which are of concern to those who wish to write scanners
acceptable to either implementation. The POSIX lex specification is closer to flex’s behavior than that of
the original lex implementation, but there also remain some incompatibilities between flex and POSIX. The
intent is that ultimately flex will be fully POSIX-conformant. In this section we discuss all of the known
areas of incompatibility.

flex’s −−l option turns on maximum compatibility with the original AT&T lex implementation, at the cost of
a major loss in the generated scanner’s performance. We note below which incompatibilities can be over-
come using the −−l option.

flex is fully compatible with lex with the following exceptions:

- The undocumented lex scanner internal variable yylineno is not supported unless −−l is used.

yylineno is not part of the POSIX specification.

- The input() routine is not redefinable, though it may be called to read characters following what-
ever has been matched by a rule. If input() encounters an end-of-file the normal yywrap() pro-
cessing is done. A ‘‘real’’ end-of-file is returned by input() as EOF.

Input is instead controlled by defining the YY_INPUT macro.

The flex restriction that input() cannot be redefined is in accordance with the POSIX specification,
which simply does not specify any way of controlling the scanner’s input other than by making an
initial assignment to yyin.

- flex scanners are not as reentrant as lex scanners. In particular, if you have an interactive scanner
and an interrupt handler which long-jumps out of the scanner, and the scanner is subsequently

Version 2.4 November 1993 27

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

called again, you may get the following message:

fatal flex scanner internal error--end of buffer missed

To reenter the scanner, first use

yyrestart(yyin);

Note that this call will throw away any buffered input; usually this isn’t a problem with an interac-
tive scanner.

Also note that flex C++ scanner classes are reentrant, so if using C++ is an option for you, you
should use them instead. See "Generating C++ Scanners" above for details.

- output() is not supported. Output from the ECHO macro is done to the file-pointer yyout (default
stdout).

output() is not part of the POSIX specification.

- lex does not support exclusive start conditions (%x), though they are in the POSIX specification.

- When definitions are expanded, flex encloses them in parentheses. With lex, the following:

NAME [A-Z][A-Z0-9]∗
%%
foo{NAME}? printf("Found it\n");
%%

will not match the string "foo" because when the macro is expanded the rule is equivalent to
"foo[A-Z][A-Z0-9]∗ ?" and the precedence is such that the ’?’ is associated with "[A-Z0-9]∗ ".
With flex, the rule will be expanded to "foo([A-Z][A-Z0-9]∗)?" and so the string "foo" will match.

Note that if the definition begins with ˆ or ends with $ then it is not expanded with parentheses, to
allow these operators to appear in definitions without losing their special meanings. But the <s>,
/, and <<EOF>> operators cannot be used in a flex definition.

Using −−l results in the lex behavior of no parentheses around the definition.

The POSIX specification is that the definition be enclosed in parentheses.

- The lex %r (generate a Ratfor scanner) option is not supported. It is not part of the POSIX
specification.

- After a call to unput(), yytext and yyleng are undefined until the next token is matched, unless the
scanner was built using %array. This is not the case with lex or the POSIX specification. The −−l
option does away with this incompatibility.

- The precedence of the {} (numeric range) operator is different. lex interprets "abc{1,3}" as
"match one, two, or three occurrences of ’abc’", whereas flex interprets it as "match ’ab’ followed
by one, two, or three occurrences of ’c’". The latter is in agreement with the POSIX specification.

- The precedence of the ˆ operator is different. lex interprets "ˆfoo|bar" as "match either ’foo’ at the
beginning of a line, or ’bar’ anywhere", whereas flex interprets it as "match either ’foo’ or ’bar’ if
they come at the beginning of a line". The latter is in agreement with the POSIX specification.

- yyin is initialized by lex to be stdin; flex, on the other hand, initializes yyin to NULL and then
assigns it to stdin the first time the scanner is called, providing yyin has not already been assigned
to a non-NULL value. The difference is subtle, but the net effect is that with flex scanners, yyin
does not have a valid value until the scanner has been called.

The −−l option does away with this incompatibility.

Version 2.4 November 1993 28

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

- The special table-size declarations such as %a supported by lex are not required by flex scanners;
flex ignores them.

- The name FLEX_SCANNER is #define’d so scanners may be written for use with either flex or
lex.

The following flex features are not included in lex or the POSIX specification:

yyterminate()
<<EOF>>
<∗ >
YY_DECL
YY_START
YY_USER_ACTION
#line directives
%{}’s around actions
multiple actions on a line

plus almost all of the flex flags. The last feature in the list refers to the fact that with flex you can put multi-
ple actions on the same line, separated with semi-colons, while with lex, the following

foo handle_foo(); ++num_foos_seen;

is (rather surprisingly) truncated to

foo handle_foo();

flex does not truncate the action. Actions that are not enclosed in braces are simply terminated at the end of
the line.

DIAGNOSTICS
warning, rule cannot be matched indicates that the given rule cannot be matched because it follows other
rules that will always match the same text as it. For example, in the following "foo" cannot be matched
because it comes after an identifier "catch-all" rule:

[a-z]+ got_identifier();
foo got_foo();

Using REJECT in a scanner suppresses this warning.

warning, −−s option given but default rule can be matched means that it is possible (perhaps only in a partic-
ular start condition) that the default rule (match any single character) is the only one that will match a par-
ticular input. Since −−s was given, presumably this is not intended.

reject_used_but_not_detected undefined or yymore_used_but_not_detected undefined - These errors can
occur at compile time. They indicate that the scanner uses REJECT or yymore() but that flex failed to
notice the fact, meaning that flex scanned the first two sections looking for occurrences of these actions and
failed to find any, but somehow you snuck some in (via a #include file, for example). Make an explicit
reference to the action in your flex input file. (Note that previously flex supported a %used/%unused
mechanism for dealing with this problem; this feature is still supported but now deprecated, and will go
away soon unless the author hears from people who can argue compellingly that they need it.)

flex scanner jammed - a scanner compiled with −−s has encountered an input string which wasn’t matched
by any of its rules. This error can also occur due to internal problems.

token too large, exceeds YYLMAX - your scanner uses %array and one of its rules matched a string longer
than the YYLMAX constant (8K bytes by default). You can increase the value by #define’ing YYLMAX
in the definitions section of your flex input.

Version 2.4 November 1993 29

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

scanner requires −8 flag to use the character ’x’ - Your scanner specification includes recognizing the 8-bit
character ’x’ and you did not specify the −8 flag, and your scanner defaulted to 7-bit because you used the
−−Cf or −−CF table compression options. See the discussion of the −−7 flag for details.

flex scanner push-back overflow - you used unput() to push back so much text that the scanner’s buffer
could not hold both the pushed-back text and the current token in yytext. Ideally the scanner should
dynamically resize the buffer in this case, but at present it does not.

input buffer overflow, can’t enlarge buffer because scanner uses REJECT - the scanner was working on
matching an extremely large token and needed to expand the input buffer. This doesn’t work with scanners
that use REJECT.

fatal flex scanner internal error--end of buffer missed - This can occur in an scanner which is reentered
after a long-jump has jumped out (or over) the scanner’s activation frame. Before reentering the scanner,
use:

yyrestart(yyin);

or, as noted above, switch to using the C++ scanner class.

too many start conditions in <> you listed more start conditions in a <> construct than exist (so you must
have listed at least one of them twice).

FILES
See flex(1).

DEFICIENCIES / BUGS
Again, see flex(1).

SEE ALSO
flex(1), lex(1), yacc(1), sed(1), awk(1).

M. E. Lesk and E. Schmidt, LEX − Lexical Analyzer Generator

AUTHOR
Vern Paxson, with the help of many ideas and much inspiration from Van Jacobson. Original version by
Jef Poskanzer. The fast table representation is a partial implementation of a design done by Van Jacobson.
The implementation was done by Kevin Gong and Vern Paxson.

Thanks to the many flex beta-testers, feedbackers, and contributors, especially Francois Pinard, Casey Lee-
dom, Nelson H.F. Beebe, benson@odi.com, Peter A. Bigot, Keith Bostic, Frederic Brehm, Nick Christo-
pher, Jason Coughlin, Bill Cox, Dave Curtis, Scott David Daniels, Chris G. Demetriou, Mike Donahue,
Chuck Doucette, Tom Epperly, Leo Eskin, Chris Faylor, Jon Forrest, Kaveh R. Ghazi, Eric Goldman,
Ulrich Grepel, Jan Hajic, Jarkko Hietaniemi, Eric Hughes, John Interrante, Ceriel Jacobs, Jeffrey R. Jones,
Henry Juengst, Amir Katz, ken@ken.hilco.com, Kevin B. Kenny, Marq Kole, Ronald Lamprecht, Greg
Lee, Craig Leres, John Levine, Steve Liddle, Mohamed el Lozy, Brian Madsen, Chris Metcalf, Luke
Mewburn, Jim Meyering, G.T. Nicol, Landon Noll, Marc Nozell, Richard Ohnemus, Sven Panne, Roland
Pesch, Walter Pelissero, Gaumond Pierre, Esmond Pitt, Jef Poskanzer, Joe Rahmeh, Frederic Raimbault,
Rick Richardson, Kevin Rodgers, Jim Roskind, Doug Schmidt, Philippe Schnoebelen, Andreas Schwab,
Alex Siegel, Mike Stump, Paul Stuart, Dave Tallman, Chris Thewalt, Paul Tuinenga, Gary Weik, Frank
Whaley, Gerhard Wilhelms, Kent Williams, Ken Yap, Nathan Zelle, David Zuhn, and those whose names
have slipped my marginal mail-archiving skills but whose contributions are appreciated all the same.

Thanks to Keith Bostic, Jon Forrest, Noah Friedman, John Gilmore, Craig Leres, John Levine, Bob Mul-
cahy, G.T. Nicol, Francois Pinard, Rich Salz, and Richard Stallman for help with various distribution
headaches.

Thanks to Esmond Pitt and Earle Horton for 8-bit character support; to Benson Margulies and Fred Burke
for C++ support; to Kent Williams and Tom Epperly for C++ class support; to Ove Ewerlid for support of
NUL’s; and to Eric Hughes for support of multiple buffers.

Version 2.4 November 1993 30

FLEXDOC (1) UNIX Programmer’s Manual FLEXDOC (1)

This work was primarily done when I was with the Real Time Systems Group at the Lawrence Berkeley
Laboratory in Berkeley, CA. Many thanks to all there for the support I received.

Send comments to:

Vern Paxson
Systems Engineering
Bldg. 46A, Room 1123
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

vern@ee.lbl.gov

Version 2.4 November 1993 31

