Welcome to CS 536:
Introduction to Programming Languages and Compilers!

Instructor: Beck Hasti
e hasti@cs.wisc.edu
e Office hours to be determined

TAs

Andrey Yao
Robert Nagel
Sadman Sakib
Saikumar Yadugiri
Ting Cai

Course websites:

canvas.wisc.edu
www.piazza.com/wisc/spring2024/compsci536

pages.cs.wisc.edu/~hasti/cs536

About the course
We will study compilers
We will understand how they work
We will build a full compiler

Course mechanics
Exams (60%)

e Midterm 1 (18%): Thursday, February 29, 7:30 — 9 pm
e Midterm 2 (16%): Thursday, March 21, 7:30 — 9 pm
e Final (26%): Sunday, May 5, 2:45 — 4:45 pm

Programming Assignments (40%)
o 6 programs: 5% + 7% + 7% + 7% + 7%+ 7%

Homework Assignments
¢ 8 short homeworks (optional, not graded)

Week 1 (W) Page 1



What is a compiler?

A compiler is
e recognizer of language S

e atranslatorfromSto T

e aprogram in language H

Front end vs back end

front end = understand source code S; map S to IR
IR = intermediate representation

backend=map IRto T

Week 1 (W) Page 2



Symbol
table

front end

Week 1 (W)

Overview of typical compiler

Source program

sequence of characters

\

/

Scanner

\

sequence of tokens
y

Parser

AST

\

/

Semantic analyzer

augmented, annotated AST

\

/

Intermediate code generator

Optimzer

optimized IR

\

/

Code generator

assembly or machchine code

\

/

Object program

Page 3



Scanner
Input: characters from source program
Output: sequence of tokens

Actions:
e group characters into lexemes (tokens)
e identify and ignore whitespace, comments, etc.

What errors can it catch?
e bad characters

e unterminated strings
e integer literals that are too large
Parser
Input: sequence of tokens from the scanner
Output: AST (abstract syntax tree)

Actions:
e group tokens into sentences

What errors can it catch?
e syntax errors

e (possibly) static semantic errors
Semantic analyzer
Input: AST
Output: annotated AST

Actions: does more static semantic checks
e Name analysis

e Type checking

Intermediate code generator
Input: annotated AST
Output: intermediate representation (IR)

Week 1 (W) Page 4



Example

a =2 * Db + abs(-71);

Scanner produces tokens:

AST (from parser)

Symbol table

3-address code

Week 1 (W) Page 5



Optimizer
Input: IR
Output: optimized IR

Actions: improve code
e make it run faster, make it smaller
e several passes: local and global optimization
e more time spent in compilation; less time in execution

Code generator
Input: IR from optimizer
Output: target code

Symbol Table

Compiler keeps track of names in
e semantic analyzer
e code generation
e optimizer

P1 : implement symbol table

Block-structured language
e nested visibility of names
e easy to tell which def of a name applies
o lifetime of data is bound to scope

Example: (from C)

int x, vy,

volid A () {
double x, z;
C(x, v, 2)7
}

void B() {

C(x, vy, 2)s;
}

Week 1 (W) Page 6



	Welcome to CS 536: Introduction to Programming Languages and Compilers!
	About the course
	Course mechanics
	What is a compiler?
	Front end vs back end
	Overview of typical compiler
	Scanner
	Parser
	Semantic analyzer
	Intermediate code generator
	Example
	Optimizer
	Code generator
	Symbol Table

