CS 536 Announcements for Wednesday, January 31, 2024
Course websites:

pages.cs.wisc.edu/~hasti/cs536
www.plazza.com/wisc/spring2024/compsci536

Programming Assignment 1
e test code due Sunday, Feb. 4 by 11:59 pm
e other files due Thursday, Feb. 8 by 11:59 pm

Last Time
e start scanning
¢ finite state machines
e formalizing finite state machines
e coding finite state machines
e deterministic vs non-deterministic FSMs

Today
e non-deterministic FSMs
e equivalence of NFAs and DFAs
e regular languages
e regular expressions

Next Time
e regular expressions - DFAs
e language recognition = tokenizers
e scanner generators
o JlLex

Recall
e scanner : converts a sequence of characters to a sequence of tokens
e scanner implemented using FSMs
e FSMs can be DFA or NFA

Creating a scanner /+ °dec] ﬂq’(" / A‘h’ / \W Nl

)(\('\

T 1 R U (& rexst ime)
token regex NFA DFA
scanner = to +|to + | to +|to
regex NFA DFA code
scanner generator

Week 2(W) Page 1

NFAs, formally G?(S\ = Powlr 4
finite state machine M=(Q, £, 5, q, F) °¥ S

Einae sen ¢ eS| 17 1- Fe@ =%rdal
N ___J L—-STO\(::\ z:’zgz::% EQ Shesiy @LS

m\ 9\\“\’{* ACang, m\
(e g}
(5y mbo\ - o\r\otwkg-b Conca: N ' 52 QX 2.—%0))(Q)
L(M) = the Ianguage of FSM M = set of all strings M accepts L"?Q i‘g DFA

Example:

O \

—(&, -——=>‘ s\:is‘s ng”sﬁ
S| 13 %J

"Running” an NFA
To check if a string is in L(M) of NFA M, simulate set of choices it could make.

—%8\—)@ -lhp\»‘\-: 1.1.1

Pro
N / \
1 / \ s_:w&

1 / Vi
57.
‘i’gh\c‘\ Sxote

The string is in L(//) iff there is at least one sequence of transitions that
e consumes all input (without getting stuck) and
—
e ends in one of the final states
e

Week 2(W) Page 2

NFA and DFA are equivalent
Two automata M and M* are equivalent iff | (M) = L(M?)
Lemmas to be proven:

\/Lemma 1: Given a DFA M, one can construct an NFA M* that recognizes the same
language as M, i.e., L(M*) = L(M)

Lemma 2: Given an NFA M, one can construct a DFA M* that recognizes the same
language as M, i.e., L(M*) = L(M)

Proving Lemma 2

Lemma 2: Given an NFA M, one can construct a DFA M* that recognizes the same
language as M, i.e., L(M*) = L(M)

Part 1: Given an NFA M without &-transitions, one can construct a DFA M* that recognizes
the same language as M

Part 2: Given an NFA M with &-transitions, one can construct a NFA M™ without &-transitions
that recognizes the same language as M

Week 2(W) Page 3

NFA without e-transitions to DFA

Observation: we can only be in finitely many subsets of states at any one time

Idea: to do NFA M - DFA M*, use a single state in M* to simulate sets of states in M
Suppose M has |Q)| states. Then M* can have only up to (z\@" states.

Why?

Xy

° X

Example

A B C
0 0 of-ci‘:

o o 129ch

0 1 0= 9%%

(] 1 1= 99,0

1 0 0‘—?,1-\5

1 0 1=%A,09

1 1 0= A%
11 1= A B3

Week 2(W) Page 4

NFA without e-transitions to DFA
Given NFA M:

Xy
;

\
Build new DFA 1"\ 'hee Q¥_C__. P@) \Q*\ S 1\Q

To build DFA: Add an edge in M* from state S* on character c to state T*if T* represents the
set of all states that a state in S* could possibly transition to on input ¢

W M Au\, STAL in (WK
3 1ol 6f (N 15 o Gieod cstece 1 (NF

whosl SPseA Contalng 6

e-transitions

Example: x”, where n is even or divisible_by. 3

hecept
X¥% fx\ even & oF X

|
N -\-'\nq,s Gu 00<S ﬁ °Sf X\S

Ao oy B

Week 2(W) Page 5

Eliminating e-transitions
Goal: given NFA M with e-transitions, construct an £-free NFA M* that is equivalent to M

Definition: e_psilon closure

eclose(S) = set of all states reachable from S using 0 or more epsilon transitions
D

eclose
P | £0,Q8%
a | 3Q%
R | 2R3
a1| 4Q\%
R1| TR\

r2| 700%

'3 MeXe S on M,(.Q,O‘V\‘n;
Ao, 1a M¥ ;gg_
em(,s\ COMming AN
augqeing 2%4e of (‘l‘/ oot €
) B ecdn edge 29T oM
o €3og o M¥
S* '__0_\._a "\:*
Sor eodn Ko xS € edap (5%)
& Q" eadnV *sff*&eu\ose(‘f
) Dolece o\l edogy)
\abe\ed Wit ¢

Week 2(W) Page 6

Summary of FSMs

DFAs and NFAs are equivalent
e an NFA can be converted into a DFA, which can be implemented via the table-driven
approach

&-transitions do not add expressiveness to NFAs
e algorithm to remove &-transitions

Regular Languages and Regular Expressions
Regular language
Any language recognized by an FSM is a regular language

Examples:
e single-line comments beginning with //
e hexadecimal integer literals in Java
e C/C++ identifiers

« {g, ab, abab, ababab, abababab, ..} &z —KCy u‘ud‘{«a) rsm

Regular expression (VQ‘Q(’/X\
= a pattern that defines a regular language
regular language: (potentially infinite) set of strings
regular expression: represents a (potentially infinite) set of strings by a single pattern

Example: {€, ab, abab, ababab, abababab, ...} <> (ab)”

Why do we need them?
e Each token in a programming language can be defined by a regular language

e Scanner-generator input = one regular expression for each token to be recognized by
the scanner

> ¢ Q_cse,;(\‘: AR QU G A SLanal” cf,«\w

Formal definition

A regular expression over an alphabet % is any of the following:
e ((the empty regular expression)
o ¢
e a(foranyae€z)

Moreover, if R1 and R2 are regular expressions over 2, thensoare: R1| Rz, Ri- R2 , R1*

Week 2(W) Page 7

Regular expressions (as an expression language)
regular expression = pattern describing a set of strings

operands: single characters, epsilon ¢ f\D(‘e(,e A&\w

operators: [/\7\./
alternation ("or"): a|b yaetdnes @, mo.-tdusk

concatenation ("followed by"): a.b ab m«ed\e: ov\)
Coteaation
iteration ("Kleene star"): a* enatdnds O ot ™ofe a.\>

\4\00..\9 (,\oswq,, closuee l):i,_,o\\ A GG s .. x\\o)\n

Conventions
aa isa.a
a+ is aa*
L letter is alblcld|...ly|z|A|B|...|Z
ﬂ) digit is 0]1/2]...|9
not(x) is all characters except x
parentheses for grouping and overriding precedence, e.g., (ab)* o\&)(2_ o\ (b*\

Example: single-line comments beginning with //
(1
/ nst O\t)¥ '\
nQw e

Example: hexadecimal integer literals inrJava
e must start Ox or 0X
o followed by at least one hexadecimal digit (hexdigit)
e hexdigit=0,1,2,3,4,5,6,7,8,9 a,b,c, d, e, f,A B,CD,EF
e optionally can add long specifier (1 or L) at end

QXX hexdigit™ (2 LILY

Example: C/C++ identifiers (with one added restriction)

e sequence of letters/digits/underscores
e cannot begin with a digit (_/___l
e cannot end with an underscore

Week 2(W) Page 8

	CS 536 Announcements for Wednesday, January 31, 2024
	NFAs, formally
	"Running" an NFA
	NFA and DFA are equivalent
	Proving Lemma 2
	NFA without 𝜺-transitions to DFA
	Example
	NFA without 𝜺-transitions to DFA
	𝜺-transitions
	Eliminating 𝜺-transitions
	Summary of FSMs
	Regular Languages and Regular Expressions
	Regular expressions (as an expression language)

