CS 536 Announcements for Wednesday, January 31, 2024
Course websites:

pages.cs.wisc.edu/~hasti/cs536
www.plazza.com/wisc/spring2024/compsci536

Programming Assignment 1
e test code due Sunday, Feb. 4 by 11:59 pm
e other files due Thursday, Feb. 8 by 11:59 pm

Last Time
e start scanning
¢ finite state machines
e formalizing finite state machines
e coding finite state machines
e deterministic vs non-deterministic FSMs

Today
e non-deterministic FSMs
e equivalence of NFAs and DFAs
e regular languages
e regular expressions

Next Time
e regular expressions - DFAs
e language recognition = tokenizers
e scanner generators
o JlLex

Recall
e scanner : converts a sequence of characters to a sequence of tokens
e scanner implemented using FSMs
e FSMs can be DFA or NFA

Creating a scanner /+ °dec] ﬂq’(" / A‘h’ / \W Nl

)(\('\

T 1 R U (& rexst ime)
token regex NFA DFA
scanner = to +|to + | to +|to
regex NFA DFA code
scanner generator
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NFAs, formally G?(S\ = Powlr 4
finite state machine M=(Q, £, 5, q, F) °¥ S
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L(M) = the Ianguage of FSM M = set of all strings M accepts L"?Q i‘g DFA

Example:
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"Running” an NFA
To check if a string is in L(M) of NFA M, simulate set of choices it could make.
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The string is in L(//) iff there is at least one sequence of transitions that
e consumes all input (without getting stuck) and
—
e ends in one of the final states
e
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NFA and DFA are equivalent
Two automata M and M* are equivalent iff | (M) = L(M?)
Lemmas to be proven:

\/Lemma 1: Given a DFA M, one can construct an NFA M* that recognizes the same
language as M, i.e., L(M*) = L(M)

Lemma 2: Given an NFA M, one can construct a DFA M* that recognizes the same
language as M, i.e., L(M*) = L(M)

Proving Lemma 2

Lemma 2: Given an NFA M, one can construct a DFA M* that recognizes the same
language as M, i.e., L(M*) = L(M)

Part 1: Given an NFA M without &-transitions, one can construct a DFA M* that recognizes
the same language as M

Part 2: Given an NFA M with &-transitions, one can construct a NFA M™ without &-transitions
that recognizes the same language as M
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NFA without e-transitions to DFA

Observation: we can only be in finitely many subsets of states at any one time

Idea: to do NFA M - DFA M*, use a single state in M* to simulate sets of states in M
Suppose M has |Q)| states. Then M* can have only up to (z\@" states.

Why?

Xy

° X

Example
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11 1= A B3
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NFA without e-transitions to DFA
Given NFA M:

Xy
;

\
Build new DFA 1"\ 'hee Q¥_C__. P@) \Q*\ S 1\Q

To build DFA: Add an edge in M* from state S* on character c to state T*if T* represents the
set of all states that a state in S* could possibly transition to on input ¢
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e-transitions

Example: x”, where n is even or divisible_by. 3
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Eliminating e-transitions
Goal: given NFA M with e-transitions, construct an £-free NFA M* that is equivalent to M

Definition: e_psilon closure

eclose(S) = set of all states reachable from S using 0 or more epsilon transitions
D

eclose
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Summary of FSMs

DFAs and NFAs are equivalent
e an NFA can be converted into a DFA, which can be implemented via the table-driven
approach

&-transitions do not add expressiveness to NFAs
e algorithm to remove &-transitions

Regular Languages and Regular Expressions
Regular language
Any language recognized by an FSM is a regular language

Examples:
e single-line comments beginning with //
e hexadecimal integer literals in Java
e C/C++ identifiers

« {g, ab, abab, ababab, abababab, ..} &z —KCy u‘ud‘{«a) rsm

Regular expression (VQ‘Q(’/X\
= a pattern that defines a regular language
regular language: (potentially infinite) set of strings
regular expression: represents a (potentially infinite) set of strings by a single pattern

Example: {€, ab, abab, ababab, abababab, ...} <> (ab)”

Why do we need them?
e Each token in a programming language can be defined by a regular language

e Scanner-generator input = one regular expression for each token to be recognized by
the scanner

> ¢ Q_cse,;(\‘: AR QU G A SLanal” cf,«\w

Formal definition

A regular expression over an alphabet % is any of the following:
e ( (the empty regular expression)
o ¢
e a(foranyae€z)

Moreover, if R1 and R2 are regular expressions over 2, thensoare: R1| Rz, Ri- R2 , R1*
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Regular expressions (as an expression language)
regular expression = pattern describing a set of strings

operands: single characters, epsilon ¢ f\D(‘e(,e A&\w

operators: [/\7\./
alternation ("or"): a|b yaetdnes @, mo.-tdusk

concatenation ("followed by"): a.b ab m«ed\e: ov\)
Coteaation
iteration ("Kleene star"): a*  enatdnds O ot ™ofe a.\>

\4\00..\9 (,\oswq,, closuee l):i,_,o\\ A GG s .. x\\o)\n

Conventions
aa isa.a
a+ is aa*
L letter is alblcld|...ly|z|A|B|...|Z
ﬂ) digit is 0]1/2]...|9
not(x) is all characters except x
parentheses for grouping and overriding precedence, e.g., (ab)* o\&)( 2_ o\ ( b*\

Example: single-line comments beginning with //
( 1
/ nst O\t )¥ '\
nQw e

Example: hexadecimal integer literals inrJava
e must start Ox or 0X
o followed by at least one hexadecimal digit (hexdigit)
e hexdigit=0,1,2,3,4,5,6,7,8,9 a,b,c, d, e, f,A B,CD,EF
e optionally can add long specifier (1 or L) at end

QXX hexdigit™ (2 LILY

Example: C/C++ identifiers (with one added restriction)

e sequence of letters/digits/underscores
e cannot begin with a digit (_/___l
e cannot end with an underscore
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