
Week 3 (W) Page 1

CS 536 Announcements for Wednesday, February 7, 2024
Programming Assignment 2
• released later today
• due Tuesday, February 20

Last Time
• regular expressions  DFAs
• language recognition  tokenizers
• scanner generators
• JLex

Today
• JLex
• CFGs

Next Time
• CFG ambiguity

JLex
Declarative specification : you don't tell JLex how to scan / how to match tokens,
you tell JLex what you want scanned (tokens) & what to do when a token is matched
Input: set of regular expressions + associated actions
Output: Java source code for a scanner
Format of JLex specification : 3 sections separated by %%
• user code section
• directives
• regular expression rules

Example
// User Code section: For right now, we will not use it.

%%

DIGIT= [0-9]
LETTER= [a-zA-Z]
WHITESPACE= [\040\t\n]

%state SPECIALINTSTATE

%implements java_cup.runtime.Scanner
%function next_token
%type java_cup.runtime.Symbol

%eofval{
System.out.println("All done");
return null;
%eofval}

%line

Week 3 (W) Page 2

%%

({LETTER}|"_")({DIGIT}|{LETTER}|"_")* {
 System.out.println(yyline+1 + ": ID "
 + yytext()); }

"=" { System.out.println(yyline+1 + ": ASSIGN"); }
"+" { System.out.println(yyline+1 + ": PLUS"); }
"^" { System.out.println(yyline+1 + ": EXP"); }
"<" { System.out.println(yyline+1 + ": LESSTHAN"); }
"+=" { System.out.println(yyline+1 + ": INCR"); }
"<=" { System.out.println(yyline+1 + ": LEQ"); }
{WHITESPACE}* { }
. { System.out.println(yyline+1 + ": bad char"); }

Regular expression rules section

Format: <regex>{code} where <regex> is a regular expression for a single token
• can use macros from Directives section – surround with curly braces { }
• characters represent themselves (except special characters)
• characters inside " " represent themselves (except \")
• . matches anything

Regular expression operators: | * + ? ()

Character class operators: - ^ \

Using scanner generated by JLex in a program
// inFile is a FileReader initialized to read from the
// file to be scanned

Yylex scanner = new Yylex(inFile);

try {

 scanner.next_token();

} catch (IOException ex) {
 System.err.println(
 "unexpected IOException thrown by the scanner");
 System.exit(-1);
}

Week 3 (W) Page 3

Why regular expressions are not good enough
Regular expression wrap-up
+ perfect for tokenizing a language
– limitations

• define only limited family of languages
• can't be used to specify all the programming constructs we need

• no notion of structure

Regexs cannot handle "matching"
Example: L() = { (n)n where n > 0}
Theorem: No regex/DFA can describe the language L()
Proof by contradiction: Suppose there exists a DFA A for L() where A has N states.

Then A has to accept the string (N)N with some sequence of states

By the pigeonhole principle, there exists i, j ≤ N where i < j such that
So

In other words,

No notion of structure
Consider the following stream of tokens: ID ASSIGN ID PLUS ID

Week 3 (W) Page 4

The Chomsky Language Hierarchy
 Language class:

 recursively enumerable

 context-sensitive

 context-free

 regular

Context-free grammar (CFG)
= a set of recursive rewriting rules to generate patterns of strings

Formal definition: A CFG is a 4-tuple (N, ∑, P, S)

• N = set of non-terminals

• ∑ = set of terminals

• P = set of productions

• S = initial non-terminal symbol ("start symbol"), S ϵ N

Week 3 (W) Page 5

Productions
Production syntax : LHS  RHS

Language defined by a CFG
= set of strings (i.e., sequences of terminals) that can be derived from the start non-terminal

To derive a string (of terminal symbols):
• set Curr_Seq to start symbol

• repeat
• find a non-terminal x in Curr_Seq
• find production of the form x  α
• "apply" production: create new Curr_Seq by replacing x with α

• until Curr_Seq contains no non-terminals

Derivation notation
• derives

• derives in one or more steps

• derives in zero or more steps

L(G) = language defined by CFG G
 =

Week 3 (W) Page 6

Example grammar
Terminals

 BEGIN

 END

 SEMICOLON

 ASSIGN

 ID

 PLUS

Non-terminals

 prog

 stmts

 stmt

 expr

Productions

1) prog  BEGIN stmts END

2) stmts  stmts SEMICOLON stmt
3) | stmt

4) stmt  ID ASSIGN expr

5) expr  ID
6) | expr PLUS ID

Week 3 (W) Page 7

Example derivation
Productions
1) prog  BEGIN stmts END
2) stmts  stmts SEMICOLON stmt
3) | stmt
4) stmt  ID ASSIGN expr
5) expr  ID
6) | expr PLUS ID

Derivation

prog ⟹ BEGIN stmts END

⟹ BEGIN stmts SEMICOLON stmt END

⟹ BEGIN stmt SEMICOLON stmt END

⟹ BEGIN ID ASSIGN expr SEMICOLON stmt END

⟹ BEGIN ID ASSIGN expr SEMICOLON ID ASSIGN expr END

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN expr END

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN expr PLUS ID END

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN ID PLUS ID END

Week 3 (W) Page 8

Parse trees
= way to visualize a derivation

To derive a string (of terminal symbols):
• set root of parse tree to start symbol

• repeat

• find a leaf non-terminal x
• find production of the form x  α
• "apply" production: symbols in α become the children of x

• until there are no more leaf non-terminals

Derived sequence determined from leaves, from left to right

Productions
1) prog  BEGIN stmts END
2) stmts  stmts SEMICOLON stmt
3) | stmt
4) stmt  ID ASSIGN expr
5) expr  ID
6) | expr PLUS ID

	CS 536 Announcements for Wednesday, February 7, 2024
	JLex
	Why regular expressions are not good enough
	Regexs cannot handle "matching"
	No notion of structure
	The Chomsky Language Hierarchy
	Context-free grammar (CFG)
	Productions
	Language defined by a CFG
	Example grammar
	Example derivation
	Parse trees

