CS 536 Announcements for Wednesday, February 7, 2024

Programming Assignment 2
e released later today
e due Tuesday, February 20

Last Time
e regular expressions - DFAs
e language recognition = tokenizers
e scanner generators
o Jlex

Today
o Jlex
e CFGs

Next Time
e CFG ambiguity

JLex
Declarative specification : you don't tell JLex how to scan / how to match tokens,
you tell JLex what you want scanned (tokens) & what to do when a token is matched

Input: set of regular expressions + associated actions
Output: Java source code for a scanner
Format of JLex specification : 3 sections separated by %%

e user code section
e directives
e regular expression rules

Example

// User Code section: For right now, we will not use it.
DIGIT= [0-9]

LETTER= [a—zA-7]

WHITESPACE= [\040\t\n]
$state SPECIALINTSTATE

simplements java cup.runtime.Scanner
$function next token
stype java cup.runtime.Symbol

$eofval{
System.out.println ("All done");
return null;

$eofval}

%$1line

Week 3 (W) Page 1

o\°
o\°

({LETTER} |" ") ({DIGIT} | {LETTER}|" ")* {
System.out.println(yyline+l + ": ID
+ yytext()); }

"=" { System.out.println(yyline+1l + ": ASSIGN"); }
"4+ { System.out.println(yyline+1l + ": PLUS"); }
man { System.out.println(yyline+l + ": EXP"); }
" { System.out.println(yyline+1l + ": LESSTHAN");
"4=" { System.out.println(yyline+1l + ": INCR"); }
"=" { System.out.println(yyline+l + ": LEQ"); }
{WHITESPACE}* {13

{ System.out.println(yyline+1l + ": bad char");

Regular expression rules section

}

}

Format: <regex>{code} where <regex> is a regular expression for a single token

e can use macros from Directives section — surround with curly braces { }
e characters represent themselves (except special characters)

e characters inside " " represent themselves (except \")

e . matches anything

Regular expression operators: | * + ? ()

Character class operators: - n \

Using scanner generated by JLex in a program

// 1nFile is a FileReader initialized to read from the
// file to be scanned

Yylex scanner = new Yylex(inFile);
try {
scanner.next token();

} catch (IOException ex) {
System.err.println (

"unexpected IOException thrown by the scanner");

System.exit (-1);

Week 3 (W)

Page 2

Why regular expressions are not good enough
Regular expression wrap-up
+ perfect for tokenizing a language
— limitations

o define only limited family of languages
e can't be used to specify all the programming constructs we need

e no notion of structure

Regexs cannot handle "matching”

Example: L) = { (")” where n > 0}

Theorem: No regex/DFA can describe the language L)

Proof by contradiction: Suppose there exists a DFA A for L) where A has N states.
Then A has to accept the string (V)Y with some sequence of states

By the pigeonhole principle, there exists i, j < N where j < j such that
So

In other words,

No notion of structure
Consider the following stream of tokens: ID ASSIGN ID PLUS ID

Week 3 (W) Page 3

The Chomsky Language Hierarchy
Language class:

recursively enumerable
context-sensitive
context-free

regular

Context-free grammar (CFG)

= a set of recursive rewriting rules to generate patterns of strings

Formal definition: A CFG is a 4-tuple (N, >, P, S)
e N = set of non-terminals
e > =setof terminals
e P =set of productions

e S = initial non-terminal symbol ("start symbol"), S € N

Week 3 (W) Page 4

Productions
Production syntax : LHS - RHS

Language defined by a CFG

= set of strings (i.e., sequences of terminals) that can be derived from the start non-terminal

To derive a string (of terminal symbols):
e set Curr_Seq to start symbol

e repeat
¢ find a non-terminal x in Curr_Seq
¢ find production of the form x 2 a
e "apply" production: create new Curr_Seq by replacing x with a

e until Curr_Seq contains no non-terminals

Derivation notation
e derives
e derives in one or more steps

e derives in zero or more steps

L(G) = language defined by CFG G

Week 3 (W) Page 5

Example grammar

Terminals
BEGIN
END
SEMICOLON
ASSIGN
ID
PLUS

Non-terminals
prog
stmts
stmt

expr

Productions
1) prog > BEGIN stmts END

2) stmts -> stmts SEMICOLON stmt
3) | stmt

4) stmt - ID ASSIGN expr

5) expr > ID
6) | exprPLUSID

Week 3 (W) Page 6

Example derivation
Productions
1) prog > BEGIN stmts END

2) stmts > stmts SEMICOLON stmt
3) | stmt

4) stmt - ID ASSIGN expr

5) expr > ID
6) | exprPLUSID

Derivation

prog = BEGIN stmts END
= BEGIN stmts SEMICOLON stmt END
— BEGIN stmt SEMICOLON stmt END
— BEGIN ID ASSIGN expr SEMICOLON stmt END
= BEGIN ID ASSIGN expr SEMICOLON ID ASSIGN expr END
— BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN expr END
— BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN expr PLUS ID END

— BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN ID PLUS ID END

Week 3 (W) Page 7

Parse trees

= way to visualize a derivation

To derive a string (of terminal symbols):
e set root of parse tree to start symbol
e repeat

¢ find a leaf non-terminal x
e find production of the form x 2 a
e "apply" production: symbols in a become the children of x

e until there are no more leaf non-terminals
Derived sequence determined from leaves, from left to right

Productions
1) prog -> BEGIN stmts END
2) stmts > stmts SEMICOLON stmt

3) | stmt

4) stmt > ID ASSIGN expr
5) expr > ID

6) | exprPLUS ID

Week 3 (W)

Page 8

	CS 536 Announcements for Wednesday, February 7, 2024
	JLex
	Why regular expressions are not good enough
	Regexs cannot handle "matching"
	No notion of structure
	The Chomsky Language Hierarchy
	Context-free grammar (CFG)
	Productions
	Language defined by a CFG
	Example grammar
	Example derivation
	Parse trees

