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CS 536 Announcements for Wednesday, February 7, 2024 
Programming Assignment 2 
• released later today 
• due Tuesday, February 20 

Last Time 
• regular expressions  DFAs 
• language recognition  tokenizers 
• scanner generators 
• JLex 

Today 
• JLex 
• CFGs 

Next Time 
• CFG ambiguity 

 

JLex 
Declarative specification : you don't tell JLex how to scan / how to match tokens,  
you tell JLex what you want scanned (tokens) & what to do when a token is matched 
Input: set of regular expressions + associated actions 
Output: Java source code for a scanner 
Format of JLex specification : 3 sections separated by %% 
• user code section 
• directives 
• regular expression rules 

Example 
// User Code section:  For right now, we will not use it. 

%% 

DIGIT=  [0-9] 
LETTER=  [a-zA-Z] 
WHITESPACE= [\040\t\n] 

%state SPECIALINTSTATE 

%implements java_cup.runtime.Scanner 
%function next_token 
%type java_cup.runtime.Symbol 

%eofval{ 
System.out.println("All done"); 
return null; 
%eofval} 

%line 
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%% 
 

({LETTER}|"_")({DIGIT}|{LETTER}|"_")* { 
                          System.out.println(yyline+1 + ": ID "  
                        + yytext()); } 
 
"="            { System.out.println(yyline+1 + ": ASSIGN"); } 
"+"            { System.out.println(yyline+1 + ": PLUS"); } 
"^"            { System.out.println(yyline+1 + ": EXP"); } 
"<"            { System.out.println(yyline+1 + ": LESSTHAN"); } 
"+="           { System.out.println(yyline+1 + ": INCR"); } 
"<="           { System.out.println(yyline+1 + ": LEQ"); } 
{WHITESPACE}*  { } 
.              { System.out.println(yyline+1 + ": bad char"); } 

 
Regular expression rules section 

Format:   <regex>{code}    where <regex> is a regular expression for a single token 
• can use macros from Directives section – surround with curly braces { } 
• characters represent themselves (except special characters) 
• characters inside " " represent themselves (except \" ) 
• . matches anything 

Regular expression operators:  |   *   +   ?   ( ) 

Character class operators:    -     ^     \ 
 
 
 
Using scanner generated by JLex in a program 
// inFile is a FileReader initialized to read from the 
// file to be scanned 

Yylex scanner = new Yylex(inFile); 

try { 

    scanner.next_token(); 

} catch (IOException ex) { 
    System.err.println( 
              "unexpected IOException thrown by the scanner"); 
    System.exit(-1); 
} 
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Why regular expressions are not good enough 
Regular expression wrap-up 
+ perfect for tokenizing a language 
–  limitations 

• define only limited family of languages 
• can't be used to specify all the programming constructs we need 

• no notion of structure 
 

Regexs cannot handle "matching" 
Example: L( ) = { (n)n where n > 0} 
Theorem: No regex/DFA can describe the language L( ) 
Proof by contradiction: Suppose there exists a DFA A for L( )  where A has N states. 

Then A has to accept the string (N)N with some sequence of states 
 
 
 
 
 
By the pigeonhole principle, there exists i, j ≤ N where i < j such that 
So 
 
 
 
 
In other words,  
 
 
 

No notion of structure 
Consider the following stream of tokens:  ID ASSIGN ID PLUS ID 
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The Chomsky Language Hierarchy 
 Language class: 
 
 recursively enumerable 
 
 context-sensitive 
 
 context-free 
 
 regular 
 
 
 
 
 
 

Context-free grammar (CFG) 
= a set of recursive rewriting rules to generate patterns of strings 
 
 
 
 
 
 
Formal definition: A CFG is a 4-tuple (N, ∑, P, S) 

• N = set of non-terminals  

• ∑ = set of terminals 

• P = set of productions 

• S = initial non-terminal symbol ("start symbol"), S ϵ N 
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Productions 
Production syntax : LHS  RHS 

 

 

 

 

 

 

 

 

 

 

Language defined by a CFG  
= set of strings (i.e., sequences of terminals) that can be derived from the start non-terminal  

To derive a string (of terminal symbols): 
• set Curr_Seq to start symbol 

• repeat 
• find a non-terminal x in Curr_Seq 
• find production of the form x  α 
• "apply" production: create new Curr_Seq by replacing x with α 

• until Curr_Seq contains no non-terminals 

Derivation notation 
• derives 

• derives in one or more steps 

• derives in zero or more steps 

L(G) = language defined by CFG G 
 =  
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Example grammar 
Terminals 

 BEGIN 

 END 

 SEMICOLON 

 ASSIGN 

 ID 

 PLUS 
 
Non-terminals 

 prog 

 stmts 

 stmt 

 expr 
 
Productions 

1) prog  BEGIN stmts END 

2) stmts  stmts SEMICOLON stmt 
3)   | stmt 

4) stmt  ID ASSIGN expr 

5) expr  ID 
6)   | expr PLUS ID 
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Example derivation 
Productions 
1) prog  BEGIN stmts END 
2) stmts  stmts SEMICOLON stmt 
3)   | stmt 
4) stmt  ID ASSIGN expr 
5) expr  ID 
6)   | expr PLUS ID 
 
Derivation 

prog  ⟹ BEGIN stmts END 

⟹ BEGIN stmts SEMICOLON stmt END 

⟹ BEGIN stmt SEMICOLON stmt END 

⟹ BEGIN ID ASSIGN expr SEMICOLON stmt END 

⟹ BEGIN ID ASSIGN expr SEMICOLON ID ASSIGN expr END 

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN expr END 

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN expr PLUS ID END 

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN ID PLUS ID END 
  



Week 3 (W)  Page 8 

Parse trees 
= way to visualize a derivation 

To derive a string (of terminal symbols): 
• set root of parse tree to start symbol 

• repeat 

• find a leaf non-terminal x 
• find production of the form x  α 
• "apply" production: symbols in α become the children of x 

• until there are no more leaf non-terminals 

Derived sequence determined from leaves, from left to right 

Productions 
1) prog  BEGIN stmts END 
2) stmts  stmts SEMICOLON stmt 
3)   | stmt 
4) stmt  ID ASSIGN expr 
5) expr  ID 
6)   | expr PLUS ID 
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