
Week 4 (W) Page 1

CS 536 Announcements for Wednesday, February 14, 2024
Programming Assignment 2
• due Tuesday, February 20

Last Time
• Makefiles
• ambiguous grammars
• grammars for expressions

• precedence
• associativity

• grammars for lists
Today
• syntax-directed translation
• intro to abstract syntax trees

Next Time
• implementing ASTs

Recall our expression grammar
Write an unambiguous grammar for integer expressions involving only addition, multiplication,
and parentheses thate correctly handles precedence and associativity.

expr  expr PLUS term
 | term
term  term TIMES factor
 | factor
factor  INTLIT
 | LPAREN expr RPAREN

Extend this grammar to add exponentiation (POW)
Add exponentiation (POW) to this grammar, with the correct precedence and associativity.

Week 4 (W) Page 2

Overview of CFGs

CFGs for language definition
• the CFGs we've discussed can generate/define languages of valid strings

CFGs for language recognition

CFGs for parsing

Week 4 (W) Page 3

Syntax-directed translation
= translating from a sequence of tokens into a sequence of actions/other form,

based on underlying syntax

To define a syntax-directed translation
Augment CFG with translation rules
• define translation of LHS non-terminal as a function of

•

•

•

To translate a sequence of tokens using SDT

•

• use translation rules to compute translation of

• translation of sequence of tokens is

The type of the translation can be anything:

Note:

Week 4 (W) Page 4

Example: grammar for language of binary numbers

CFG translation rules
b  0 b.trans = 0
 | 1 b.trans = 1
 | b 0 b1.trans = b2.trans * 2
 | b 1 b1.trans = b2.trans * 2 + 1

Week 4 (W) Page 5

Example: grammar for language of variable declarations

CFG Translation rules

declList  ε

 | decl declList

decl  type ID ;

type  INT

 | BOOL

Write a syntax-directed translation for the CFG given above so that the translation of a
sequence of tokens is a string containing the ID's that have been declared.

Week 4 (W) Page 6

Example: grammar for language of variable declarations

CFG Translation rules

declList  ε

 | decl declList

decl  type ID ;

type  INT

 | BOOL

Modify the previous syntax-directed translation so that only declarations of type int are
added to the output string.

Week 4 (W) Page 7

SDT for parsing
Previous examples showed SDT process assigning different types to the translation

• translate tokenized stream to an integer value

• translate tokenized stream to a string

For parsing, we'll need to translate a tokenized stream to an abstract-syntax tree (AST)

Abstract syntax trees
AST = condensed form of parse tree

•

•

•

•

Week 4 (W) Page 8

AST Example

CFG

expr  expr PLUS term
 | term
term  term TIMES factor
 | factor
factor  INTLIT
 | LPAREN expr RPAREN

	CS 536 Announcements for Wednesday, February 14, 2024
	Recall our expression grammar
	Overview of CFGs
	Syntax-directed translation
	Example: grammar for language of binary numbers
	Example: grammar for language of variable declarations
	Example: grammar for language of variable declarations
	SDT for parsing
	Abstract syntax trees
	AST Example

