CS 536 Announcements for Wednesday, February 21, 2024

Programming Assignment 2

e due Tuesday, February 20 — accepted until 11:59 pm Thursday

e see late policy on course website

Midterm 1
e Thursday, February 29, 7:30 — 9 pm
e S429 Chemistry
e bring your student ID

Last Time
e implementing ASTs

Today
e Java CUP

Next Week
e review for Midterm 1
e parsing

Parser generators
Tools that take an SDT spec and build an AST
e YACC

e Java CUP

Conceptually similar to JLex:
¢ Input: language rules + actions

e OQutput: Java code

parser 2> Java CUP 2> parser source
specification symbols

Week 5 (M)

Page 1



parser. java

e constructor takes argument of type Yylex

e parse method

e if input correct, returns symbol whose value field contains translation of root

nonterm

e if inputincorrect, quits on first syntax error

Java CUP

e uses output of JLex

e depends on scanner and TokenVal classes
e sym.java defines the communication language

e uses definitions of AST classes (in ast . java)

Parts of Java CUP specification

Grammar rules with actions:
expr ::= INTLITERAL

ID

expr TIMES expr

LPAREN expr RPAREN

.
’

|
| expr PLUS expr
|
|

Terminal and nonterminal declarations:

terminal
terminal
terminal
terminal
terminal
terminal

INTLITERAL;
I1D;

PLUS;
TIMES;
LPAREN;
RPAREN;

non terminal expr;

Precedence and associativity declarations:

precedence left PLUS;
precedence left TIMES;

Week 5 (M)

Page 2



Java CUP Example
Assume:

e Java class ExpNode with subclasses IntLitNode, IdNode, PlusNode, TimesNode
e PlusNode and TimesNode each have two children

e TdNode has a String field (for the identifier)

e IntLitNode has an int field (for the integer value)

e INTLITERAL token is represented by IntLitTokenVal class and has field intval

e 1D token is represented by TdTokenVval class and has field idval

Step 1: add types to terminals and nonterminals

/*
* Terminal declarations
*/

terminal INTLITERAL;

terminal ID;

terminal PLUS;

terminal TIMES;

terminal LPAREN;

terminal RPAREN;

/*
* Nonterminal declarations
*/

non terminal expr;

Step 2: add precedences and associativities

/*
* Precedence and associativity declarations
*/

precedence left PLUS;

precedence left TIMES;

Week 5 (M) Page 3



Java CUP Example (cont.)

Step 3: add actions to CFG rules

/*

* Grammar rules with actions
*/
expr ::= INTLITERAL

{:

| ID
{:
)
| expr PLUS expr
{:
:}
| expr TIMES expr
{:
)
| LPAREN expr RPAREN

{:

Week 5 (M) Page 4



Java CUP Example (cont.)
Input: 2 + 3

Week 5 (M) Page 5



Translating lists
Example
idList — idList COMMA ID | ID

Left-recursion or right-recursion?

e for top-down parsers

e for Java CUP

Example
CFG: idList — idList COMMA ID | ID

Goal: the translation of an idList isa LinkedList of Strings
Example

Input: x , v, z

Output:

Week 5 (M) Page 6



Example (cont.)

Java CUP specification for this syntax-directed translation
Terminal and nonterminal declarations:

Grammar rules and actions:

idList ::= idList COMMA ID
{:

Week 5 (M) Page 7



Handling unary minus
/*
* precedences and associativities of operators
*/
precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE;

/*
* grammar rules
*/
exp ::=
| MINUS exp:e
{: RESULT = new UnaryMinusNode (e) ;
)
| exp:el PLUS exp:e’
{: RESULT = new PlusNode(el, e2);
:}
| exp:el MINUS exp:e2
{: RESULT = new MinusNode (el, e2);
:}
Week 5 (M)

Page 8



	CS 536 Announcements for Wednesday, February 21, 2024
	Parser generators
	Java CUP
	Java CUP Example
	Java CUP Example (cont.)
	Java CUP Example (cont.)
	Translating lists
	Example
	Example (cont.)
	Handling unary minus

