
Week 7 (M) Page 1

CS 536 Announcements for Monday, March 4, 2024
Last Time
• approaches to parsing
• bottom-up parsing
• CFG transformations

• removing useless non-terminals
• Chomsky normal form (CNF)

• CYK algorithm
Today
• wrap up CYK
• classes of grammars
• top-down parsing

Next Time
• building a predictive parser
• FIRST and FOLLOW sets

Parsing (big picture)

Context-free grammars (CFGs)
• language generation:

• language recognition:

Translation
• given w ϵ L(G), create

• given w ϵ L(G), create

Week 7 (M) Page 2

CYK algorithm
Step 1: get grammar in Chomsky Normal Form
Step 2: build all possible parse trees bottom-up
• start with runs of 1 terminal
• connect 1-terminal runs into 2-terminal runs
• connect 1- and 2-terminal runs into 3-terminal runs
• connect 1- and 3- or 2- and 2-terminal runs into 4-runs
• …
• if we can connect entire tree, rooted at start symbol, we've found a valid parse

Pros: able to parse an arbitrary CFG

Cons: O(n3) time complexity

For special classes of grammars, we can parse in O(n) time

Classes of grammars
 LL(1)

 LALR(1)

Both are accepted by parser generators
LALR(1)
• parsed by bottom-up parsers
• harder to understand

LL(1)
• parsed by top-down parsers

Week 7 (M) Page 3

Top-down parsers
• Start at start symbol
• Repeatedly "predict" what production to use

Predictive parser overview

Example
CFG: s  (s) | { s } | ε
Parse table:

 () { } EOF

s

Input: ({ }) EOF

Week 7 (M) Page 4

Predictive parser algorithm
stack.push(EOF)
stack.push(start nonterm)
T = scanner.getToken()

repeat

 if stack.top is terminal Y
 match Y with T
 pop Y from stack
 T = scanner.getToken()

 if stack.top is nonterminal x
 get table[x, current token T]
 pop x from stack
 push production's RHS (each symbol from R to L)

until one of the following:
 stack is empty
 stack.top is a terminal that does not match T
 stack.top is a nonterm and parse-table entry is empty

Example

CFG: s  (s) | { s } | ε
Parse table:

 () { } EOF

s

Input: ((} EOF

Week 7 (M) Page 5

Consider
CFG: s  (s) | { s } | () | { } | ε
Parse table:

 () { } EOF

S

Two issues

1) How do we know if the language is LL(1)?
2) How do we build the selector table?

Week 7 (M) Page 6

Converting non-LL(1) grammars to LL(1) grammars

Necessary (but not sufficient conditions) for LL(1) parsing
• free of left recursion – no left-recursive rules

• left-factored – no rules with a common prefix, for any nonterminal

Left recursion
• A grammar G is recursive in nonterm X iff X =>+ α X β

• A grammar G is left recursive in nonterm X iff X =>+ X β

• A grammar G is immediately left recursive in X iff X => X β

Why left-recursion is a problem

Consider: xlist  xlist ID | ID

Week 7 (M) Page 7

Removing left-recursion
We can remove immediate left recursion without "changing" the grammar:

Consider: A  A β
 | α

Solution: introduce new nonterminal A'
and new productions:

More generally,

 A  α1 | α2 | . . . | αn | A β1 | A β2 | . . . | A βp
transforms to

Week 7 (M) Page 8

Grammars that are not left-factored
If a nonterminal has two productions whose right-hand sides have a common prefix, the
grammar is not left-factored.

Example: s  (s) | ()

Given: A  α β1 | α β2
transform it to

More generally,

 A  α β1 | α β2 | . . . | α βn | δ1 | δ2 | . . . | δp
transforms to

Combined example
exp  (exp)
 | exp exp
 | ()

	CS 536 Announcements for Monday, March 4, 2024
	Parsing (big picture)
	CYK algorithm
	Classes of grammars
	Top-down parsers
	Example
	Predictive parser algorithm
	Consider
	Converting non-LL(1) grammars to LL(1) grammars
	Removing left-recursion

